Abstract

Fluid loss during subterranean drilling often occurs through fractures that develop or preexist around the wellbore. Particulate additives, known as lost circulation material (LCM), are commonly added to the drilling fluid to mitigate lost circulation. The LCM forms an impermeable agglomerate within the fractures while preventing further tensile failure of the wellbore wall. The outcome is enhancement in the wellbore breakdown limit. A semi-analytical elastic solution is developed to estimate the width of near-wellbore fractures that partially close on the LCM agglomerate. The solution uses stress–strain data from confined compression testing on LCMs. The compression test results are modeled through a modified form of Kawakita’s (1971) powder compaction equation. The developed constitutive model is embedded within the described semi-analytical solution for the wellbore fractures. The solution adopts an incremental loading approach to treat the nonlinearities arising from the characterized LCM constitutive behavior, as well as large deformation of the LCM agglomerate within the partially closed fractures. At each incremental load, the nonlocal stress equilibrium along the fracture length is described via an integral equation. Successive solutions to these integral equations determine the unknown fracture width of partially closed fractures. A competition between the fractures tendency for propagation and the wellbore wall tendency for secondary tensile failure determines the overall stability of the fractured wellbore. Mechanical behavior of the LCM agglomerate under compression is identified as a key parameter that controls both mechanisms, thereby, the gain in breakdown limit of a fractured and LCM-treated wellbore.

References

1.
Hubbert
,
M. K.
, and
Willis
,
D. G.
,
1957
, “
Mechanics of Hydraulic Fracturing
,”
Trans. AIME
,
210
(
1
), pp.
153
168
.
2.
Haimson
,
B.
, and
Fairhurst
,
C.
,
1967
, “
Initiation and Extension of Hydraulic Fractures in Rocks
,”
Soc. Pet. Eng. J.
,
7
(
3
), pp.
310
318
.
3.
Lecampion
,
B.
,
2012
, “
Modeling Size Effects Associated With Tensile Fracture Initiation From a Wellbore
,”
Int. J. Rock Mech. Min. Sci.
,
56
(
1
), pp.
67
76
.
4.
Alberty
,
M. W.
, and
McLean
,
M. R.
,
2001
, “
Fracture Gradients in Depleted Reservoirs-Drilling Wells in Late Reservoir Life
,”
SPE/IADC Drilling Conference
,
Amsterdam, The Netherlands
,
Feb. 27–Mar. 1
, Society of Petroleum Engineers, pp.
1
8
.
5.
Bradley
,
W. B.
,
1979
, “
Failure of Inclined Boreholes
,”
ASME J. Energy Resour. Technol.
,
101
(
4
), pp.
232
239
.
6.
Aadnoy
,
B. S.
, and
Chenevert
,
M. E.
,
1987
, “
Stability of Highly Inclined Boreholes (Includes Associated Papers 18596 and 18736)
,”
2
(
4
), pp.
364
374
.
7.
Willson
,
S. M.
,
Edwards
,
S.
,
Heppard
,
P. D.
,
Li
,
X.
,
Coltrin
,
G.
,
Chester
,
D. K.
,
Harrison
,
H. L.
, and
Cocales
,
B. W.
,
2003
, “
Wellbore Stability Challenges in the Deep Water, Gulf of Mexico: Case History Examples From the Pompano Field
,”
SPE Annual Technical Conference and Exhibition
,
Denver, CO
,
Oct. 5–7
, Society of Petroleum Engineers, pp.
1
10
.
8.
Rocha
,
L. A. S.
,
Junqueira
,
P.
, and
Roque
,
J. L.
,
2003
, “
Overcoming Deep and Ultra Deepwater Drilling Challenges
,”
Offshore Technology Conference
,
Houston, TX
,
May 5
, pp.
1
12
.
9.
Van Oort
,
E.
, and
Vargo
,
R. F.
,
2007
, “
Improving Formation Strength Tests and Their Interpretation
,”
SPE Drill. Complet.
,
23
(
3
), pp.
284
294
.
10.
Canson
,
B. E.
,
1985
, “
Lost Circulation Treatments for Naturally Fractured, Vugular, or Cavernous Formations
,”
SPE/IADC Drilling Conference
,
New Orleans, LA
,
Mar. 5
, OnePetro, pp.
155
166
.
11.
Teufel
,
L. W.
, and
Farrell
,
H. E.
,
1990
,
In Situ Stress and Natural Fracture Distribution in the Ekofisk Field
,
North Sea, Sandia National Labs
,
Albuquerque, NM
(No. SAND-90-1058C; CONF-9006181-2).
12.
Dyke
,
C. G.
,
Wu
,
B.
, and
Milton-Tayler
,
D.
,
1995
, “
Advances in Characterising Natural Fracture Permeability From Mud Log Data
,”
SPE Formation Eval.
,
10
(
3
), pp.
160
166
.
13.
Potluri
,
N. K.
,
Zhu
,
D.
, and
Hill
,
A. D.
,
2005
, “
The Effect of Natural Fractures on Hydraulic Fracture Propagation
,”
SPE European Formation Damage Conference
,
Sheveningen, The Netherlands
,
May 25–27
, OnePetro, pp.
1
6
.
14.
Zoback
,
M. D.
,
2010
,
Reservoir Geomechanics
,
Cambridge University Press
,
Cambridge
.
15.
Asadi
,
M. S.
,
Khaksar
,
A.
,
White
,
A.
,
Yao
,
Z.
, and
King
,
P.
,
2014
, “
Challenges in Defining Fracture Gradient for Highly Deviated Wells in the Presence of Natural Fractures in Deepwater Environments
,”
48th US Rock Mechanics/Geomechanics Symposium
,
Minneapolis, MN
,
June 1–4
, OnePetro, pp.
1
11
. https://onepetro.org/ARMAUSRMS/proceedings-abstract/ARMA14/All-ARMA14/ARMA-2014-7010/122394
16.
White
,
R. J.
,
1956
, “
Lost-Circulation Materials and Their Evaluation
,”
Drilling and Production Practice
,
Los Angeles, CA
,
May 10
, OnePetro, pp.
1
10
. https://onepetro.org/APIDPP/proceedingsabstract/API56/All-API56/API-56-352/51301
17.
Gatlin
,
C.
, and
Nemir
,
C. E.
,
1961
, “
Some Effects of Size Distribution on Particle Bridging in Lost Circulation and Filtration Tests
,”
J. Pet. Technol.
,
13
(
6
), pp.
575
578
.
18.
Morita
,
N.
,
Black
,
A. D.
, and
Guh
,
G. F.
,
1990
, “
Theory of Lost Circulation Pressure
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 23–26
, OnePetro, pp.
43
58
.
19.
Aston
,
M. S.
,
Alberty
,
M. W.
,
McLean
,
M. R.
,
De Jong
,
H. J.
, and
Armagost
,
K.
,
2004
, “
Drilling Fluids for Wellbore Strengthening
,”
IADC/SPE Drilling Conference
,
Dallas, TX
,
Mar. 2–4
, OnePetro, pp.
1
8
.
20.
Wang
,
M. B.
,
Guo
,
Y. L.
, and
Chen
,
W. Q.
,
2020
, “
Effect of Solid Particles on the Lost Circulation of Drilling Fluid: A Numerical Simulation
,”
Powder Technol.
,
363
(
1
), pp.
408
418
.
21.
Lashkari
,
R.
,
Tabatabaei-Nezhad
,
S. A.
, and
Husein
,
M. M.
,
2021
, “
Shape Memory Polyurethane as a Wellbore Strengthening Material
,”
Powder Technol.
,
396
(
A
), pp.
291
304
.
22.
Soroush
,
H.
,
Sampaio
,
J. H.
, and
Nakagawa
,
E. Y.
,
2006
, “
Investigation Into Strengthening Methods for Stabilizing Wellbores in Fractured Formations
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Sept. 24–27
, OnePetro, pp.
1
8
.
23.
Song
,
J.
, and
Rojas
,
J. C.
,
2006
, “
Preventing Mud Losses by Wellbore Strengthening
,”
SPE Russian Oil and Gas Technical Conference and Exhibition
,
Moscow, Russia
,
Oct. 3
, OnePetro, pp.
1
3
.
24.
Wang
,
H.
,
Sweatman
,
R. E.
,
Engelman
,
R.
,
Deeg
,
W. F.
,
Whitfill
,
D. L.
,
Soliman
,
M. Y.
, and
Towler
,
B. F.
,
2008
, “
Best Practice in Understanding and Managing Lost Circulation Challenges
,”
SPE Drill. Complet.
,
23
(
2
), pp.
168
175
.
25.
Morita
,
N.
,
Fuh
,
G. F.
, and
Black
,
A. D.
,
1996
, “
Borehole Breakdown Pressure With Drilling Fluids—II. Semi-Analytical Solution to Predict Borehole Breakdown Pressure
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
33
(
1)
, pp.
53
69
.
26.
Dupriest
,
F. E.
,
2005
, “
Fracture Closure Stress (FCS) and Lost Returns Practices
,”
SPE/IADC Drilling Conference
,
Amsterdam, The Netherlands
,
Feb. 23–25
, OnePetro, pp.
1
11
.
27.
Warren
,
W. E.
,
1982
, “
The Quasi-Static Stress Field Around a Fractured Well Bore
,”
Int. J. Fract.
,
18
(
2
), pp.
113
124
.
28.
Alberty
,
M. W.
, and
McLean
,
M. R.
,
2004
, “
A Physical Model for Stress Cages
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 26
, OnePetro, pp.
1
8
.
29.
Whitfill
,
D.
,
2008
, “
Lost Circulation Material Selection, Particle Size Distribution and Fracture Modeling With Fracture Simulation Software
,”
IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition
,
Jakarta, Indonesia
,
Aug. 25–27
, OnePetro, pp.
1
12
.
30.
Razavi
,
O.
,
Vajargah
,
A. K.
,
van Oort
,
E.
,
Aldin
,
M.
, and
Govindarajan
,
S.
,
2016
, “
Optimum Particle Size Distribution Design for Lost Circulation Control and Wellbore Strengthening
,”
J. Nat. Gas Sci. Eng.
,
35
(
A
), pp.
836
850
.
31.
Nguyen
,
K.
,
Mehrabian
,
A.
, and
Santra
,
A.
,
2020
, “
Multi-Modal Particle Size Distribution of Lost Circulation Material Blend for Controlling Fluid Losses From Multiple Fractures Around Inclined Wellbores
,”
SPE Asia Pacific Oil & Gas Conference and Exhibition 2020
,
Perth, Australia
,
Nov. 12
, Society of Petroleum Engineers, pp.
1
22
.
32.
Abrams
,
A.
,
1977
, “
Mud Design to Minimize Rock Impairment Due to Particle Invasion
,”
J. Pet. Technol.
,
29
(
5
), pp.
586
592
.
33.
Vickers
,
S.
,
Cowie
,
M.
,
Jones
,
T.
, and
Twynam
,
A. J.
,
2006
, “
A New Methodology That Surpasses Current Bridging Theories to Efficiently Seal a Varied Pore Throat Distribution as Found in Natural Reservoir Formations
,”
Wiertnictwo Nafta Gaz
,
23
(
1
), pp.
501
515
.
34.
Kumar
,
A.
,
Savari
,
S.
,
Whitfill
,
D.
, and
Jamison
,
D. E.
,
2010
, “
Wellbore Strengthening: The Less-Studied Properties of Lost-Circulation Materials
,”
SPE Annual Technical Conference and Exhibition
,
Florence, Italy
,
Sept. 19–22
, Society of Petroleum Engineers, pp.
1
13
.
35.
Savari
,
S.
,
Whitfill
,
D. L.
, and
Kumar
,
A.
,
2012
, “
Resilient Lost Circulation Material (LCM): A Significant Factor in Effective Wellbore Strengthening
,”
SPE Deepwater Drilling and Completions Conference
,
Galveston, TX
,
June 20–21
, Society of Petroleum Engineers, pp.
1
7
.
36.
Mehrabian
,
A.
, and
Abousleiman
,
Y.
,
2017
, “
Wellbore Geomechanics of Extended Drilling Margin and Engineered Lost-Circulation Solutions
,”
SPE J.
,
22
(
4
), pp.
1178
1188
.
37.
Sanders
,
M. W.
,
Scorsone
,
J. T.
, and
Friedheim
,
J. E.
,
2010
, “
High-Fluid-Loss, High-Strength Lost Circulation Treatments
,”
SPE Deepwater Drilling and Completions Conference
,
Galveston, TX
,
Oct. 5
, OnePetro, pp.
1
6
.
38.
Yan
,
X.
,
Kang
,
Y.
,
Xu
,
C.
,
Shang
,
X.
,
You
,
Z.
, and
Zhang
,
J.
,
2020
, “
Fracture Plugging Zone for Lost Circulation Control in Fractured Reservoirs: Multiscale Structure and Structure Characterization Methods
,”
Powder Technol.
,
370
(
1
), pp.
159
175
.
39.
She
,
J.
,
Zhang
,
H.
,
Han
,
K.
,
Feng
,
Y.
,
Kang
,
Y.
, and
Zhong
,
Y.
,
2020
, “
Experimental Investigation of Mechanisms Influencing Friction Coefficient Between Lost Circulation Materials and Shale Rocks
,”
Powder Technol.
,
364
(
1
), pp.
13
26
.
40.
Chuhan
,
F. A.
,
Kjeldstad
,
A.
,
Bjørlykke
,
K.
, and
Høeg
,
K.
,
2002
, “
Porosity Loss in Sand by Grain Crushing—Experimental Evidence and Relevance to Reservoir Quality
,”
Mar. Pet. Geol.
,
19
(
1
), pp.
39
53
.
41.
Xiao
,
Y.
,
Liu
,
H.
,
Chen
,
Q.
,
Ma
,
Q.
,
Xiang
,
Y.
, and
Zheng
,
Y.
,
2017
, “
Particle Breakage and Deformation of Carbonate Sands With Wide Range of Densities During Compression Loading Process
,”
Acta Geotech.
,
12
(
5
), pp.
1177
1184
.
42.
Coube
,
O.
, and
Riedel
,
H.
,
2000
, “
Numerical Simulation of Metal Powder Die Compaction With Special Consideration of Cracking
,”
Powder Metall.
,
43
(
2
), pp.
123
131
.
43.
Garekani
,
H. A.
,
Ford
,
J. L.
,
Rubinstein
,
M. H.
, and
Rajabi-Siahboomi
,
A. R.
,
2001
, “
Effect of Compression Force, Compression Speed, and Particle Size on the Compression Properties of Paracetamol
,”
Drug Dev. Ind. Pharm.
,
27
(
9
), pp.
935
942
.
44.
Yap
,
S. F.
,
Adams
,
M. J.
,
Seville
,
J. P.
, and
Zhang
,
Z.
,
2008
, “
Single and Bulk Compression of Pharmaceutical Excipients: Evaluation of Mechanical Properties
,”
Powder Technol.
,
185
(
1
), pp.
1
10
.
45.
Adapa
,
P. K.
,
Tabil
,
L. G.
, and
Schoenau
,
G. J.
,
2009
, “
Compression Characteristics of Selected Ground Agricultural Biomass
,”
Agric. Eng. Int.: CIGR J.
,
11
(
1
), pp.
1
19
.
46.
Nicklasson
,
F.
, and
Alderborn
,
G.
,
2000
, “
Analysis of the Compression Mechanics of Pharmaceutical Agglomerates of Different Porosity and Composition Using the Adams and Kawakita Equations
,”
Pharm. Res.
,
17
(
8
), pp.
949
954
.
47.
Daouadji
,
A.
,
Hicher
,
P. Y.
, and
Rahma
,
A.
,
2001
, “
An Elastoplastic Model for Granular Materials Taking Into Account Grain Breakage
,”
Eur. J. Mech. A/Solids
,
20
(
1
), pp.
113
137
.
48.
Patel
,
S.
,
Kaushal
,
A. M.
, and
Bansal
,
A. K.
,
2007
, “
Effect of Particle Size and Compression Force on Compaction Behavior and Derived Mathematical Parameters of Compressibility
,”
Pharm. Res.
,
24
(
1
), pp.
111
124
.
49.
Nordström
,
J.
,
Klevan
,
I.
, and
Alderborn
,
G.
,
2009
, “
A Particle Rearrangement Index Based on the Kawakita Powder Compression Equation
,”
J. Pharm. Sci.
,
98
(
3
), pp.
1053
1063
.
50.
Omidvar
,
M.
,
Iskander
,
M.
, and
Bless
,
S.
,
2012
, “
Stress–Strain Behavior of Sand at High Strain Rates
,”
Int. J. Impact Eng.
,
49
(
1
), pp.
192
213
.
51.
Ilkka
,
J.
, and
Paronen
,
P.
,
1993
, “
Prediction of the Compression Behaviour of Powder Mixtures by the Heckel Equation
,”
Int. J. Pharm.
,
94
(
1–3
), pp.
181
187
.
52.
Nakata
,
Y.
,
Kato
,
Y.
,
Hyodo
,
M.
,
Hyde
,
A. F.
, and
Murata
,
H.
,
2001
, “
One-Dimensional Compression Behaviour of Uniformly Graded Sand Related to Single Particle Crushing Strength
,”
Soils Found.
,
41
(
2
), pp.
39
51
.
53.
Denny
,
P. J.
,
2002
, “
Compaction Equations: A Comparison of the Heckel and Kawakita Equations
,”
Powder Technol.
,
127
(
2
), pp.
162
172
.
54.
Samimi
,
A.
,
Hassanpour
,
A.
, and
Ghadiri
,
M.
,
2005
, “
Single and Bulk Compressions of Soft Granules: Experimental Study and DEM Evaluation
,”
Chem. Eng. Sci.
,
60
(
14
), pp.
3993
4004
.
55.
Heckel
,
R. W.
,
1961
, “
Density-Pressure Relationships in Powder Compaction
,”
Trans. Metall. Soc. AIME
,
221
(
4
), pp.
671
675
.
56.
Kawakita
,
K.
, and
Lüdde
,
K. H.
,
1971
, “
Some Considerations on Powder Compression Equations
,”
Powder Technol.
,
4
(
2
), pp.
61
68
.
57.
Shapiro
,
I.
,
1993
, “
Compaction of Powders. X. Development of a General Compaction Equation
,”
Adv. Powder Metall. Particulate Mater.
,
3
(
1
), pp.
229
243
.
58.
Adams
,
M. J.
,
Mullier
,
M. A.
, and
Seville
,
J. P. K.
,
1994
, “
Agglomerate Strength Measurement Using a Uniaxial Confined Compression Test
,”
Powder Technol.
,
78
(
1
), pp.
5
13
.
59.
Adams
,
M. J.
, and
McKeown
,
R.
,
1996
, “
Micromechanical Analyses of the Pressure-Volume Relationship for Powders Under Confined Uniaxial Compression
,”
Powder Technol.
,
88
(
2
), pp.
155
163
.
60.
Odeku
,
O. A.
, and
Itiola
,
O. A.
,
2002
, “
Characterization of Khaya Gum as a Binder in a Paracetamol Tablet Formulation
,”
Drug Dev. Ind. Pharm.
,
28
(
3
), pp.
329
337
.
61.
Klevan
,
I.
,
Nordström
,
J.
,
Tho
,
I.
, and
Alderborn
,
G.
,
2010
, “
A Statistical Approach to Evaluate the Potential Use of Compression Parameters for Classification of Pharmaceutical Powder Materials
,”
Eur. J. Pharm. Biopharm.
,
75
(
3
), pp.
425
435
.
62.
Mani
,
S.
,
Tabil
,
L. G.
, and
Sokhansanj
,
S.
,
2004
, “
Evaluation of Compaction Equations Applied to Four Biomass Species
,”
Can. Biosyst. Eng.
,
46
(
3
), pp.
55
61
.
63.
Nordström
,
J.
,
Welch
,
K.
,
Frenning
,
G.
, and
Alderborn
,
G.
,
2008
, “
On the Physical Interpretation of the Kawakita and Adams Parameters Derived From Confined Compression of Granular Solids
,”
Powder Technol.
,
182
(
3
), pp.
424
435
.
64.
Atkinson
,
B. K.
,
2015
,
Fracture Mechanics of Rock
,
Elsevier
,
New York
.
65.
Nguyen
,
K.
,
Mehrabian
,
A.
,
Santra
,
A.
, and
Dung
,
P.
,
2021
, “
Tensile Failure and Fracture Width of Partially Permeable Wellbores With Applications in Lost Circulation Material Design
,”
SPE J.
,
27
(
1
), pp.
465
487
.
66.
Weertman
,
J.
,
1996
,
Dislocation Based Fracture Mechanics
,
World Scientific
,
Singapore
.
67.
Daneshy
,
A. A.
,
1973
, “
A Study of Inclined Hydraulic Fractures
,”
Soc. Petrol. Eng. J.
,
13
(
2
), pp.
61
68
.
68.
Abass
,
H. H.
,
Hedayati
,
S.
, and
Meadows
,
D. L.
,
1996
, “
Nonplanar Fracture Propagation From a Horizontal Wellbore: Experimental Study
,”
SPE Prod. Facil.
,
11
(
3
), pp.
133
137
.
69.
Soliman
,
M. Y.
,
East
,
L.
, and
Adams
,
D.
,
2004
, “
Geomechanics Aspects of Multiple Fracturing of Horizontal and Vertical Wells
,”
SPE Drill. Complet.
,
23
(
3
), pp.
217
228
.
70.
Aadnoy
,
B. S.
,
1988
, “
Modeling of the Stability of Highly Inclined Boreholes in Anisotropic Rock Formations (Includes Associated Papers 19213 and 19886)
,”
SPE Drill. Eng.
,
3
(
3
), pp.
259
268
.
71.
Abbas
,
S.
, and
Lecampion
,
B.
,
2013
, “
Initiation and Breakdown of an Axisymmetric Hydraulic Fracture Transverse to a Horizontal Wellbore
,”
ISRM International Conference for Effective and Sustainable Hydraulic Fracturing
,
Brisbane, Australia
,
May 20–22
, pp.
1
24
.
72.
Aadnoy
,
B. S.
, and
Bell
,
J. S.
,
1998
, “
Classification of Drilling-Induced Fractures and Their Relationship to In-Situ Stress Directions
,”
Log Analyst
,
39
(
6
), pp.
27
42
.
73.
Yew
,
C. H.
, and
Li
,
Y.
,
1988
, “
Fracturing of a Deviated Well
,”
SPE Prod. Eng.
,
3
(
4
), pp.
429
437
.
74.
Hossain
,
M. M.
,
Rahman
,
M. K.
, and
Rahman
,
S. S.
,
2000
, “
Hydraulic Fracture Initiation and Propagation: Roles of Wellbore Trajectory, Perforation and Stress Regimes
,”
J. Pet. Sci. Eng.
,
27
(
3–4
), pp.
129
149
.
75.
Lecampion
,
B.
,
Abbas
,
S.
, and
Prioul
,
R.
,
2013
, “
Competition Between Transverse and Axial Hydraulic Fractures in Horizontal Wells
,”
SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
,
Feb. 4
, OnePetro, pp.
369
381
.
76.
Hallam
,
S. D.
, and
Last
,
N. C.
,
1991
, “
Geometry of Hydraulic Fractures From Modestly Deviated Wellbores
,”
J. Pet. Technol.
,
43
(
6
), pp.
742
748
.
77.
Weijers
,
L.
, and
De Pater
,
C. J.
,
1992
, “
Fracture Reorientation in Model Tests
,”
SPE Formation Damage Control Symposium
,
Lafayette, LA
,
Feb. 26
, Society of Petroleum Engineers, pp.
259
266
.
78.
Weijers
,
L.
,
De Pater
,
C. J.
,
Owens
,
K. A.
, and
Kogsbøll
,
H. H.
,
1994
, “
Geometry of Hydraulic Fractures Induced From Horizontal Wellbores
,”
SPE Prod. Facil.
,
9
(
2
), pp.
87
92
.
79.
Ito
,
T.
,
Zoback
,
M. D.
, and
Peska
,
P.
,
2001
, “
Utilization of Mud Weights in Excess of the Least Principal Stress to Stabilize Wellbores: Theory and Practical Examples
,”
SPE Drill. Complet.
,
16
(
4
), pp.
221
229
.
80.
Fairhust
,
C.
,
1986
, “
In-Situ Stress Determination—An Appraisal of Its Significance in Rock Mechanics
,”
ISRM International Symposium
,
Stockholm, Sweden
,
Aug. 31
, pp.
3
17
.
81.
Aadnoy
,
B.
, and
Looyeh
,
R.
,
2011
,
Petroleum Rock Mechanics: Drilling Operations and Well Design
,
Gulf Professional Publishing
,
Houston, TX
.
82.
Mehrabian
,
A.
,
2016
, “
The Stability of Inclined and Fractured Wellbores
,”
SPE J.
,
21
(
5
), pp.
1
518
.
83.
Fjaer
,
E.
,
Holt
,
R. M.
,
Raaen
,
A. M.
, and
Horsrud
,
P.
,
2008
,
Petroleum Related Rock Mechanics
,
Elsevier
,
New York
.
84.
Sih
,
G. C.
,
1973
,
Methods of Analysis and Solution of Crack Problems: Recent Developments in Fracture Mechanics, Theory and Methods of Solving Crack Problems
,
Noordhoff International Publishing
,
Groningen, Germany
.
85.
Mehrabian
,
A.
,
Jamison
,
D. E.
, and
Teodorescu
,
S. G.
,
2015
, “
Geomechanics of Lost-Circulation Events and Wellbore-Strengthening Operations
,”
SPE J.
,
20
(
6
), pp.
1305
1316
.
86.
Hiramatsu
,
Y.
, and
Oka
,
Y.
,
1968
, “
Determination of the Stress in Rock Unaffected by Boreholes or Drifts, From Measured Strains or Deformations
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
5
(
4
), pp.
337
353
.
87.
Ekbote
,
S.
,
Abousleiman
,
Y.
,
Cui
,
L.
, and
Zaman
,
M.
,
2004
, “
Analyses of Inclined Boreholes in Poroelastic Media
,”
Int. J. Geomech.
,
4
(
3
), pp.
178
190
.
88.
Wang
,
Y.
, and
Dusseault
,
M. B.
,
1991
, “
Borehole Yield and Hydraulic Fracture Initiation in Poorly Consolidated Rock Strata—Part II. Permeable Media
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
28
(
4
), pp.
247
260
.
89.
Kageson-Loe
,
N. M.
,
Sanders
,
M. W.
,
Growcock
,
F.
,
Taugbøl
,
K.
,
Horsrud
,
P.
,
Singelstad
,
A. V.
, and
Omland
,
T. H.
,
2009
, “
Particulate-Based Loss-Prevention Material—The Secrets of Fracture Sealing Revealed!
,”
SPE Drill. Complet.
,
24
(
4
), pp.
581
589
.
90.
Guo
,
Q.
,
Cook
,
J.
,
Way
,
P.
,
Ji
,
L.
, and
Friedheim
,
J. E.
,
2014
, “
A Comprehensive Experimental Study on Wellbore Strengthening
,”
IADC/SPE Drilling Conference and Exhibition
,
Fort Worth, TX
,
Mar. 4–6
, OnePetro, pp.
1
13
.
91.
Cook
,
J.
,
Guo
,
Q.
,
Way
,
P.
,
Bailey
,
L.
, and
Friedheim
,
J.
,
2016
, “
The Role of Filtercake in Wellbore Strengthening
,”
IADC/SPE Drilling Conference and Exhibition
,
Fort Worth, TX
,
Mar. 1–3
, Society of Petroleum Engineers, pp.
1
11
.
92.
Hagerty
,
M. M.
,
Hite
,
D. R.
,
Ullrich
,
C. R.
, and
Hagerty
,
D. J.
,
1993
, “
One-Dimensional High-Pressure Compression of Granular Media
,”
J. Geotech. Eng.
,
119
(
1
), pp.
1
18
.
93.
Nakata
,
Y.
,
Hyodo
,
M.
,
Hyde
,
A. F.
,
Kato
,
Y.
, and
Murata
,
H.
,
2001
, “
Microscopic Particle Crushing of Sand Subjected to High Pressure One-Dimensional Compression
,”
Soils Found.
,
41
(
1
), pp.
69
82
.
94.
Yamamuro
,
J. A.
,
Bopp
,
P. A.
, and
Lade
,
P. V.
,
1996
, “
One-Dimensional Compression of Sands at High Pressures
,”
J. Geotech. Eng.
,
122
(
2
), pp.
147
154
.
95.
Al Mahbub
,
A.
, and
Haque
,
A.
,
2016
, “
X-Ray Computed Tomography Imaging of the Microstructure of Sand Particles Subjected to High Pressure One-Dimensional Compression
,”
Materials
,
9
(
11
), p.
890
.
96.
Carter
,
J. P.
,
Booker
,
J. R.
, and
Small
,
J. C.
,
1979
, “
The Analysis of Finite Elasto-Plastic Consolidation
,”
Int. J. Numer. Anal. Methods Geomech.
,
3
(
2
), pp.
107
129
.
97.
Pfiffner
,
O. A.
, and
Ramsay
,
J. G.
,
1982
, “
Constraints on Geological Strain Rates: Arguments From Finite Strain States of Naturally Deformed Rocks
,”
J. Geophys. Res. Solid Earth
,
87
(
B1
), pp.
311
321
.
98.
Kaczmarek
,
M.
,
Subramaniam
,
R. P.
, and
Neff
,
S. R.
,
1997
, “
The Hydromechanics of Hydrocephalus: Steady-State Solutions for Cylindrical Geometry
,”
Bull. Math. Biol.
,
59
(
2
), pp.
295
323
.
99.
Hu
,
T.
, and
Desai
,
J. P.
,
2004
, “
Characterization of Soft-Tissue Material Properties: Large Deformation Analysis
,”
International Symposium on Medical Simulation
,
Berlin/Heidelberg
,
June 17
, Springer, pp.
28
37
.
100.
Mehrabian
,
A.
, and
Abousleiman
,
Y.
,
2011
, “
General Solutions to Poroviscoelastic Model of Hydrocephalic Human Brain Tissue
,”
J. Theor. Biol.
,
291
(
1
), pp.
105
118
.
101.
Taylor
,
T. R.
,
Giles
,
M. R.
,
Hathon
,
L. A.
,
Diggs
,
T. N.
,
Braunsdorf
,
N. R.
,
Birbiglia
,
G. V.
,
Kittridge
,
M. G.
,
Macaulay
,
C. I.
, and
Espejo
,
I. S.
,
2010
, “
Sandstone Diagenesis and Reservoir Quality Prediction: Models, Myths, and Reality
,”
AAPG Bull.
,
94
(
8
), pp.
1093
1132
.
102.
Zhang
,
H.
,
Zhang
,
R.
,
Haijun
,
Y.
,
Jianfeng
,
S.
,
Junpeng
,
W.
,
Chun
,
L.
, and
Ge
,
C. H. E. N.
,
2014
, “
Characterization and Evaluation of Ultra-Deep Fracture-Pore Tight Sandstone Reservoirs: A Case Study of Cretaceous Bashijiqike Formation in Kelasu Tectonic Zone in Kuqa Foreland Basin, Tarim, NW China
,”
Pet. Explor. Dev.
,
41
(
2
), pp.
175
184
.
103.
Nguyen
,
K.
, and
Mehrabian
,
A.
,
2021
, “
Method of Images Solution for an Edge Dislocation and a Circular Cavity in Crystalline Solids
,”
Phys. Mesomech.
,
24
(
1
), pp.
20
31
.
104.
Polyanin
,
A. D.
, and
Manzhirov
,
A. V.
,
2008
,
Handbook of Integral Equations
,
Chapman and Hall/CRC
,
Boca Raton, FL
.
105.
Erdogan
,
F.
, and
Gupta
,
G. D.
,
1972
, “
On the Numerical Solution of Singular Integral Equations
,”
Q. Appl. Math.
,
29
(
4
), pp.
525
534
.
You do not currently have access to this content.