Abstract

Polydimethylsiloxane/silica (PDMS/SiO2) particle-reinforced nanocomposites prepared at the present study are typical viscoelastic materials. Due to the high surface-to-volume ratio of the SiO2 nanoparticles, the interface effects on the overall properties of the nanocomposites cannot be ignored. In order to investigate the interface effects on the viscoelastic properties of the nanocomposites, a multiscale model is established in the present study, combining the molecular dynamics (MD) model of the interface at the nanoscale and the unit cell model of the nanocomposites at the mesoscale. In the MD model of the interface, the viscoelastic properties of the interphase region influenced by the interface are found to be different from that of the pure PDMS matrix and the bulk SiO2. Because the polymer chains subject to different restrictions existing in the interphase region, this region can possess high stiffness and damping properties simultaneously. The interphase parameters can be determined by the inverse multiscale simulation method, taking advantage of both the numerical model and the experimental results. Due to the interface effects, as demonstrated by the unit cell model, the dynamic shear moduli of the nanocomposites can be simultaneously improved by several times to an order of magnitude higher than that of the matrix, in consistent with experimental results. Thus, the mechanism of the interface effects enhancing the viscoelastic properties of the PDMS/SiO2 nanocomposites can be revealed in the present study, which can be useful for the design of viscoelastic nanocomposites with high stiffness and damping properties.

References

1.
Shankar Banerjee
,
S.
,
Ramakrishnan
,
I.
, and
Satapathy
,
B. K.
,
2017
, “
Rheological Behavior and Network Dynamics of Silica Filled Vinyl-Terminated Polydimethylsiloxane Suspensions
,”
Polym. Eng. Sci.
,
57
(
9
), pp.
973
981
.
2.
Schroyen
,
B.
,
Swan
,
J. W.
,
Van Puyvelde
,
P.
, and
Vermant
,
J.
,
2017
, “
Quantifying the Dispersion Quality of Partially Aggregated Colloidal Dispersions by High Frequency Rheology
,”
Soft Matter
,
13
(
43
), pp.
7897
7906
.
3.
Le Strat
,
D.
,
Dalmas
,
F.
,
Randriamahefa
,
S.
,
Jestin
,
J.
, and
Wintgens
,
V.
,
2013
, “
Mechanical Reinforcement in Model Elastomer Nanocomposites With Tuned Microstructure and Interactions
,”
Polymer
,
54
(
5
), pp.
1466
1479
.
4.
Gao
,
P.
,
Pu
,
W.
,
Wei
,
P.
, and
Kong
,
M.
,
2022
, “
Molecular Dynamics Simulations on Adhesion Energy of PDMS-Silica Interface Caused by Molecular Structures and Temperature
,”
Appl. Surf. Sci.
,
577
, p.
151930
.
5.
Litvinov
,
V. M.
,
Barthel
,
H.
, and
Weis
,
J.
,
2002
, “
Structure of a PDMS Layer Grafted Onto a Silica Surface Studied by Means of DSC and Solid-State NMR
,”
Macromolecules
,
35
(
11
), pp.
4356
4364
.
6.
Hosseinabadi
,
H. G.
,
Khederlou
,
K.
,
Payandehpeyman
,
J.
, and
Bagheri
,
R.
,
2016
, “
On Variations of the Interphase Thickness and the Slope of Strengthening by Clay Addition in Exfoliated Polymer-Clay Nanocomposites
,”
Polymer
,
90
, pp.
302
308
.
7.
Xu
,
W.
,
Zeng
,
Q.
, and
Yu
,
A.
,
2012
, “
Young's Modulus of Effective Clay Clusters in Polymer Nanocomposites
,”
Polymer
,
53
(
17
), pp.
3735
3740
.
8.
Huang
,
H.
,
Dobryden
,
I.
,
Thorén
,
P. A.
,
Ejenstam
,
L.
,
Pan
,
J.
,
Fielden
,
M. L.
,
Haviland
,
D. B.
, and
Claesson
,
P. M.
,
2017
, “
Local Surface Mechanical Properties of PDMS-Silica Nanocomposite Probed With Intermodulation AFM
,”
Compos. Sci. Technol.
,
150
, pp.
111
119
.
9.
Yeom
,
B.
,
Sain
,
T.
,
Lacevic
,
N.
,
Bukharina
,
D.
,
Cha
,
S. H.
,
Waas
,
A. M.
,
Arruda
,
E. M.
, and
Kotov
,
N. A.
,
2017
, “
Abiotic Tooth Enamel
,”
Nature
,
543
(
7643
), pp.
95
98
.
10.
Qiao
,
R.
, and
Catherine Brinson
,
L.
,
2009
, “
Simulation of Interphase Percolation and Gradients in Polymer Nanocomposites
,”
Compos. Sci. Technol.
,
69
(
3–4
), pp.
491
499
.
11.
Kaushik
,
A. K.
,
Podsiadlo
,
P.
,
Qin
,
M.
,
Shaw
,
C. M.
,
Waas
,
A. M.
,
Kotov
,
N. A.
, and
Arruda
,
E. M.
,
2009
, “
The Role of Nanoparticle Layer Separation in the Finite Deformation Response of Layered Polyurethane-Clay Nanocomposites
,”
Macromolecules
,
42
(
17
), pp.
6588
6595
.
12.
Li
,
Y.
,
Waas
,
A. M.
, and
Arruda
,
E. M.
,
2011
, “
The Effects of the Interphase and Strain Gradients on the Elasticity of Layer by Layer (LBL) Polymer/Clay Nanocomposites
,”
Int. J. Solids Struct.
,
48
(
6
), pp.
1044
1053
.
13.
Zamanian
,
M.
,
Ghasemi
,
F.
, and
Mortezaei
,
M.
,
2020
, “
Interphase Characterization and Modeling of Tensile Modulus in Epoxy/Silica Nanocomposites
,”
J. Appl. Polym. Sci.
,
138
(
5
), p.
49755
.
14.
Maguire
,
J. F.
,
Talley
,
P. L.
, and
Lupkowski
,
M.
,
1994
, “
The Interphase in Adhesion: Bridging the Gap
,”
J. Adhes.
,
45
(
1–4
), pp.
269
290
.
15.
Chen
,
G.
,
Xian
,
W.
,
Wang
,
Q.
, and
Li
,
Y.
,
2021
, “
Molecular Simulation-Guided and Physics-Informed Mechanistic Modeling of Multifunctional Polymers
,”
Acta Mech. Sin.
,
37
(
5
), pp.
725
745
.
16.
Li
,
Y.
,
Waas
,
A. M.
, and
Arruda
,
E. M.
,
2011
, “
A Closed-Form, Hierarchical, Multi-Interphase Model for Composites—Derivation, Verification and Application to Nanocomposites
,”
J. Mech. Phys. Solids
,
59
(
1
), pp.
43
63
.
17.
Paliwal
,
B.
,
Lawrimore
,
W. B.
,
Chandler
,
M. Q.
, and
Horstemeyer
,
M. F.
,
2017
, “
Nanomechanical Modeling of Interfaces of Polyvinyl Alcohol (PVA)/Clay Nanocomposite
,”
Philos. Mag.
,
97
(
15
), pp.
1179
1208
.
18.
Liu
,
F.
,
Hu
,
N.
,
Ning
,
H.
,
Liu
,
Y.
,
Li
,
Y.
, and
Wu
,
L.
,
2015
, “
Molecular Dynamics Simulation on Interfacial Mechanical Properties of Polymer Nanocomposites With Wrinkled Graphene
,”
Comput. Mater. Sci.
,
108
, pp.
160
167
.
19.
Lakes
,
R.
,
2009
,
Viscoelastic Materials
,
Cambridge University
,
New York
.
20.
Chao
,
C.
,
Guo
,
H.
,
Yan
,
P.
, and
Dong
,
L.
,
2021
, “
Dynamic Modulus of Staggered Nanocomposites With Different Distributions of Platelets Considering the Interface Stress Effect
,”
ASME J. Appl. Mech.
,
88
(
9
), p.
091004
.
21.
Zhang
,
P.
, and
To
,
A. C.
,
2014
, “
Highly Enhanced Damping Figure of Merit in Biomimetic Hierarchical Staggered Composites
,”
ASME J. Appl. Mech.
,
81
(
5
), p.
051015
.
22.
Grigoriev
,
F. V.
,
Sulimov
,
V. B.
, and
Tikhonravov
,
A. V.
,
2019
, “
Differences in the Properties of Fused Silica and Silicon Dioxide Films: Results of the Atomistic Simulation
,”
J. Phys.: Conf. Ser.
,
1391
(
1
), p.
012022
.
23.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “
On Some Variational Principles in Anisotropic and Nonhomogeneous Elasticity
,”
J. Mech. Phys. Solids
,
10
(
4
), pp.
335
342
.
24.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
(
2
), pp.
127
140
.
25.
Reuss
,
A.
,
1929
, “
Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle
,”
Z. angew. Math. Mech.
,
9
(
1
), pp.
49
58
.
26.
Voigt
,
W.
,
1889
, “
Ueber die Beziehung Zwischen den Beiden Elasticitätsconstanten Isotroper Körper
,”
Ann. Phys.
,
274
(
12
), pp.
573
587
.
27.
Tersoff
,
J.
,
1988
, “
New Empirical Approach for the Structure and Energy of Covalent Systems
,”
Phys. Rev. B
,
37
(
12
), pp.
6991
7000
.
28.
Munetoh
,
S.
,
Motooka
,
T.
,
Moriguchi
,
K.
, and
Shintani
,
A.
,
2007
, “
Interatomic Potential for Si–O Systems Using Tersoff Parameterization
,”
Comput. Mater. Sci.
,
39
(
2
), pp.
334
339
.
29.
Frischknecht
,
A. L.
, and
Curro
,
J. G.
,
2003
, “
Improved United Atom Force Field for Poly(Dimethylsiloxane)
,”
Macromolecules
,
36
(
6
), pp.
2122
2129
.
30.
Sides
,
S. W.
,
Curro
,
J.
,
Grest
,
G. S.
,
Stevens
,
M. J.
,
Soddemann
,
T.
,
Habenschuss
,
A.
, and
Londono
,
J. D.
,
2002
, “
Structure of Poly(Dimethylsiloxane) Melts: Theory, Simulation, and Experiment
,”
Macromolecules
,
35
(
16
), pp.
6455
6465
.
31.
Varshney
,
V.
,
Patnaik
,
S. S.
,
Roy
,
A. K.
, and
Farmer
,
B. L.
,
2008
, “
A Molecular Dynamics Study of Epoxy-Based Networks: Cross-linking Procedure and Prediction of Molecular and Material Properties
,”
Macromolecules
,
41
(
18
), pp.
6837
6842
.
32.
Abbott
,
L. J.
,
Hart
,
K. E.
, and
Colina
,
C. M.
,
2013
, “
Polymatic: A Generalized Simulated Polymerization Algorithm for Amorphous Polymers
,”
Theor. Chem. Acc.
,
132
(
3
), p.
1334
.
33.
Waldman
,
M.
, and
Hagler
,
A. T.
,
1993
, “
New Combining Rules for Rare gas van der Waals Parameters
,”
J. Comput. Chem.
,
14
(
9
), pp.
1077
1084
.
34.
Tamir
,
E.
,
Srebnik
,
S.
, and
Sidess
,
A.
,
2020
, “
Prediction of the Relaxation Modulus of a Fluoroelastomer Using Molecular Dynamics Simulation
,”
Chem. Eng. Sci.
,
225
, p.
115786
.
You do not currently have access to this content.