Abstract

How to directly relate frictions at the level of a single molecular chain to the viscoelasticity of soft materials is intriguing. Here, we choose to investigate classical elastomers, where molecular frictions are known to be generated when dangling chains move relatively to the surrounding polymer chain network. With explicit forms employed for the relationship between friction and velocity at the molecular scale, a constitutive theory is then developed for the coupling of molecular frictions and the macroscopic viscoelasticity of elastomers. With the utilization of this theory, viscoelastic behaviors of varied elastomeric materials are predicted, which agree well with existing experiments at both low and high strain rates under different loading conditions. The theory also reproduces the time-temperature equivalent principle of elastomers. We suggest that this work might have provided a modeling framework that directly couples frictions at the level of a single molecular chain to the viscoelasticity of soft materials.

References

1.
Li
,
Q.
,
Xu
,
Z.
,
Ji
,
S. C.
,
Lv
,
P. Y.
,
Li
,
X. Y.
,
Hong
,
W.
, and
Duan
,
H. L.
,
2020
, “
Kinetics-Induced Morphing of Three-Dimensional-Printed Gel Structures Based on Geometric Asymmetry
,”
ASME J. Appl. Mech.
,
87
(
7
), p.
071008
.
2.
Shojaei
,
A.
,
Li
,
G. Q.
, and
Voyiadjis
,
G. Z.
,
2013
, “
Cyclic Viscoplastic-Viscodamage Analysis of Shape Memory Polymers Fibers With Application to Self-healing Smart Materials
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
011014
.
3.
Kumar
,
P. T. S.
,
Srinivasan
,
S.
,
Lakshmanan
,
V. K.
,
Tamura
,
H.
,
Nair
,
S. V.
, and
Jayakumar
,
R.
,
2011
, “
Beta-Chitin Hydrogel/Nano Hydroxyapatite Composite Scaffolds for Tissue Engineering Applications
,”
Carbohydr. Polym.
,
85
(
3
), pp.
584
591
.
4.
Hays
,
M. R.
,
Wang
,
H.
, and
Oates
,
W. S.
,
2012
, “
Nonlinear Bending Mechanics of Hygroscopic Liquid Crystal Polymer Networks
,”
ASME J. Appl. Mech.
,
79
(
2
), p.
021009
.
5.
Jhun
,
C. S.
, and
Criscione
,
J. C.
,
2010
, “
Nonhyperelastic Nature of an Elastomeric High Strain Material
,”
ASME J. Appl. Mech.
,
77
(
6
), p.
061014
.
6.
Zhao
,
C.
,
Chen
,
Q.
,
Patel
,
K.
,
Li
,
L. Y.
,
Li
,
X. S.
,
Wang
,
Q. M.
,
Zhang
,
G.
, and
Zheng
,
J.
,
2012
, “
Synthesis and Characterization of PH-Sensitive Poly(N-2-Hydroxyethyl Acrylamide)-Acrylic Acid (Poly(HEAA/AA)) Nanogels With Antifouling Protection for Controlled Release
,”
Soft Matter
,
8
(
30
), pp.
7848
7857
.
7.
Bean
,
J. E.
,
Alves
,
D. R.
,
Laabei
,
M.
,
Esteban
,
P. P.
,
Thet
,
N. T.
,
Enright
,
M. C.
, and
Jenkins
,
A. T. A.
,
2014
, “
Triggered Release of Bacteriophage K From Agarose/Hyaluronan Hydrogel Matrixes by Staphylococcus Aureus Virulence Factors
,”
Chem. Mater.
,
26
(
24
), pp.
7201
7208
.
8.
Casolaro
,
M.
, and
Casolaro
,
I.
,
2015
, “
Controlled Release of Antidepressant Drugs by Multiple Stimuli-Sensitive Hydrogels Based on Alpha-Aminoacid Residues
,”
J. Drug Delivery Sci. Technol.
,
30
, pp.
82
89
.
9.
Hong
,
S.
,
Sycks
,
D.
,
Chan
,
H. F.
,
Lin
,
S.
,
Lopez
,
G. P.
,
Guilak
,
F.
,
Leong
,
K. W.
, and
Zhao
,
X. H.
,
2015
, “
3D Printing of Highly Stretchable and Tough Hydrogels Into Complex, Cellularized Structures
,”
Adv. Mater.
,
27
(
27
), pp.
4034
4034
.
10.
Kidowaki
,
M.
,
Zhao
,
C. M.
,
Kataoka
,
T.
, and
Ito
,
K.
,
2006
, “
Thermoreversible Sol-Gel Transition of an Aqueous Solution of Polyrotaxane Composed of Highly Methylated Alpha-Cyclodextrin and Polyethylene Glycol
,”
Chem. Commun.
,
39
, pp.
4102
4103
.
11.
Araki
,
J.
, and
Ito
,
K.
,
2007
, “
Recent Advances in the Preparation of Cyclodextrin-Based Polyrotaxanes and Their Applications to Soft Materials
,”
Soft Matter
,
3
(
12
), pp.
1456
1473
.
12.
Yao
,
F.
,
Xu
,
L. Q.
,
Fu
,
G. D.
, and
Lin
,
B. P.
,
2010
, “
Sliding-Graft Interpenetrating Polymer Networks From Simultaneous “Click Chemistry” and Atom Transfer Radical Polymerization
,”
Macromolecules
,
43
(
23
), pp.
9761
9770
.
13.
Sakai
,
T.
,
Murayama
,
H.
,
Nagano
,
S.
,
Takeoka
,
Y.
,
Kidowaki
,
M.
,
Ito
,
K.
, and
Seki
,
T.
,
2007
, “
Photoresponsive Slide-Ring Gel
,”
Adv. Mater.
,
19
(
15
), pp.
2023
2025
.
14.
Nakazono
,
K.
,
Takashima
,
T.
,
Arai
,
T.
,
Koyama
,
Y.
, and
Takata
,
T.
,
2010
, “
High-Yield One-Pot Synthesis of Permethylated α-Cyclodextrin-Based Polyrotaxane in Hydrocarbon Solvent Through an Efficient Heterogeneous Reaction
,”
Macromolecules
,
43
(
2
), pp.
691
696
.
15.
Ajdari
,
A.
,
Brochard-Wyart
,
F.
,
De Gennes
,
P. G.
,
Leibler
,
L.
,
Viovy
,
J. L.
, and
Rubinstein
,
M.
,
1994
, “
Slippage of an Entangled Polymer Melt on a Grafted Surface
,”
Phys. A
,
204
(
1–4
), pp.
17
39
.
16.
Gustafson
,
A.
, and
Morse
,
D. C.
,
2016
, “
A Reptation Model of Slip at Entangled Polymer-Polymer Interfaces
,”
Macromolecules
,
49
(
18
), pp.
7032
7044
.
17.
Li
,
Y.
,
Tang
,
S.
,
Kröger
,
M.
, and
Liu
,
W. K.
,
2016
, “
Molecular Simulation Guided Constitutive Modeling on Finite Strain Viscoelasticity of Elastomers
,”
J. Mech. Phys. Solids
,
88
, pp.
204
226
.
18.
Hénot
,
M.
,
Drockenmuller
,
E.
,
Léger
,
L.
, and
Restagno
,
F.
,
2018
, “
Sensing Adsorption Kinetics Through Slip Velocity Measurements of Polymer Melts
,”
Eur. Phys. J. E
,
41
(
7
), p.
88
.
19.
Bergström
,
J. S.
, and
Boyce
,
M. C.
,
1998
, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
,
46
(
5
), pp.
931
954
.
20.
Linder
,
C.
,
Tkachuk
,
M.
, and
Miehe
,
C.
,
2011
, “
A Micromechanically Motivated Diffusion-Based Transient Network Model and Its Incorporation Into Finite Rubber Viscoelasticity
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
2134
2156
.
21.
Hui
,
C.
, and
Long
,
R.
,
2012
, “
A Constitutive Model for the Large Deformation of a Self-Healing Gel
,”
Soft Matter
,
8
(
31
), pp.
8209
8216
.
22.
Dal
,
H.
,
Gültekin
,
O.
, and
Açıkgöz
,
K.
,
2020
, “
An Extended Eight-Chain Model for Hyperelastic and Finite Viscoelastic Response of Rubberlike Materials: Theory, Experiments and Numerical Aspects
,”
J. Mech. Phys. Solids
,
145
, p.
104159
.
23.
Wagner
,
R. J.
,
Hobbs
,
E.
, and
Vernerey
,
F. J.
,
2021
, “
A Network Model of Transient Polymers: Exploring the Micromechanics of Nonlinear Viscoelasticity
,”
Soft Matter
,
17
(
38
), pp.
8742
8757
.
24.
Simo
,
J. C.
,
1987
, “
On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
60
(
2
), pp.
153
173
.
25.
Govindjee
,
S.
, and
Simo
,
J. C.
,
1992
, “
Mullins’ Effect and the Strain Amplitude Dependence of the Storage Modulus
,”
Int. J. Solids Struct.
,
29
(
14–15
), pp.
1737
1751
.
26.
Lion
,
A.
,
1996
, “
A Constitutive Model for Carbon Black Filled Rubber: Experimental Investigations and Mathematical Representation
,”
Continuum Mech. Thermodyn.
,
8
(
3
), pp.
153
169
.
27.
Kaliske
,
M.
, and
Rothert
,
H.
,
1997
, “
Formulation and Implementation of Three-Dimensional Viscoelasticity at Small and Finite Strains
,”
Comput. Mech.
,
19
(
3
), pp.
228
239
.
28.
Lubliner
,
J.
,
1985
, “
A Model of Rubber Viscoelasticity
,”
Mech. Res. Commun.
,
12
(
2
), pp.
93
99
.
29.
Reese
,
S.
,
2003
, “
A Micromechanically Motivated Material Model for the Thermo-viscoelastic Material Behaviour of Rubber-Like Polymers
,”
Int. J. Plasticity
,
19
(
7
), pp.
909
940
.
30.
Koprowski-Theiss
,
N.
,
Johlitz
,
M.
, and
Diebels
,
S.
,
2011
, “
Characterizing the Time Dependence of Filled Epdm
,”
Rubber Chem. Technol.
,
84
(
2
), pp.
147
165
.
31.
Miehe
,
C.
, and
Göktepe
,
S.
,
2005
, “
A Micro-macro Approach to Rubber-Like Materials. Part II: The Micro-sphere Model of Finite Rubber Viscoelasticity
,”
J. Mech. Phys. Solids
,
53
(
10
), pp.
2231
2258
.
32.
Williams
,
M.
,
Landel
,
R.
, and
Ferry
,
J.
,
1955
, “
Mechanical Properties of Substances of High Molecular Weight.19. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids
,”
J. Am. Chem. Soc.
,
77
(
14
), pp.
3701
3707
.
33.
James
,
H.
, and
Guth
,
E.
,
1943
, “
Theory of the Elastic Properties of Rubber
,”
J. Chem. Phys.
,
11
(
10
), pp.
455
481
.
34.
Marko
,
J. F.
, and
Siggia
,
E. D.
,
1995
, “
Statistical Mechanics of Supercoiled DNA
,”
Phys. Rev. E
,
52
(
3
), pp.
2912
2938
.
35.
Epstein
,
M.
, and
Segev
,
R.
,
1980
, “
Differentiable Manifolds and the Principle of Virtual Work in Continuum Mechanics
,”
J. Math. Phys.
,
21
(
5
), pp.
1243
1245
.
36.
Hoo Fatt
,
M. S.
, and
Ouyang
,
X.
,
2006
, “
The Behavior of Elastomers at High Strain Rates
,”
Struct. Under Shock Impact IX
,
87
, pp.
97
106
.
37.
Green
,
M. S.
, and
Tobolsky
,
A. V.
,
1946
, “
A New Approach to the Theory of Relaxing Polymeric Media
,”
J. Chem. Phys.
,
14
(
2
), pp.
80
92
.
38.
Lodge
,
A. S.
,
1956
, “
A Network Theory of Flow Birefringence and Stress in Concentrated Polymer Solutions
,”
Trans. Faraday Soc.
,
52
(
1
), pp.
120
130
.
39.
Yamamoto
,
M.
,
1956
, “
The Visco-elastic Properties of Network Structure I. General Formalism
,”
J. Phys. Soc. Japan
,
11
(
4
), pp.
413
421
.
40.
Phan-Thien
,
N.
,
1978
, “
Non-linear Network Viscoelastic Model
,”
J. Rheol.
,
22
(
3
), pp.
259
283
.
41.
Tanaka
,
F.
, and
Edwards
,
S. F.
,
1992
, “
Viscoelastic Properties of Physically Crosslinked Networks. I: Non-Linear Stationary Viscoelasticity
,”
J. Non-Newtonian Fluid Mech.
,
43
(
2–3
), pp.
247
271
.
42.
Tanaka
,
F.
, and
Edwards
,
S. F.
,
1992
, “
Viscoelastic Properties of Physically Crosslinked Networks. II: Dynamic Mechanical Moduli
,”
J. Non-Newtonian Fluid Mech.
,
43
(
2–3
), pp.
289
309
.
43.
Doi
,
M.
, and
Edwards
,
S. F.
,
1978
, “
Dynamics of Concentrated Polymer Systems. 1. Brownian-Motion in Equilibrium State
,”
J. Chem. Soc., Faraday Trans. 2
,
74
, pp.
1789
1801
.
44.
Doi
,
M.
, and
Edwards
,
S. F.
,
1978
, “
Dynamics of Concentrated Polymer Systems. 2. Molecular-Motion Under Flow
,”
J. Chem. Soc., Faraday Trans. 2
,
74
, pp.
1802
1817
.
45.
Doi
,
M.
, and
Edwards
,
S. F.
,
1978
, “
Dynamics of Concentrated Polymer Systems. 3. Constitutive Equation
,”
J. Chem. Soc., Faraday Trans. 2
,
74
, pp.
1818
1832
.
46.
Doi
,
M.
, and
Edwards
,
S. F.
,
1986
,
The Theory of Polymer Dynamics
,
Clarendon Press
,
Oxford
.
47.
De Gennes
,
P. G.
,
1971
, “
Reptation of a Polymer Chain in Presence of Fixed Obstacles
,”
J. Chem. Phys.
,
55
(
2
), pp.
572
579
.
48.
Rubinstein
,
M.
, and
Colby
,
R. H.
,
1988
, “
Self-Consistent Theory of Polydisperse Entangled Polymers: Linear Viscoelasticity of Binary Blends
,”
J. Chem. Phys.
,
89
(
8
), pp.
5291
5306
.
49.
Viovy
,
J. L.
,
Rubinstein
,
M.
, and
Colby
,
R. H.
,
1991
, “
Constraint Release in Polymer Melts-Tube Reorganization Versus Tube Dilation
,”
Macromolecules
,
24
(
12
), pp.
3587
3596
.
50.
Doi
,
M.
,
1983
, “
Explanation for the 3.4-Power Law for Viscosity of Polymeric Liquids on the Basis of the Tube Model
,”
J. Polym. Sci. Pol. Phys.
,
21
(
5
), pp.
667
684
.
51.
Likhtman
,
A. E.
,
Milner
,
S. T.
, and
Mcleish
,
T. C. B.
,
2000
, “
Microscopic Theory for the Fast Flow of Polymer Melts
,”
Phys. Rev. Lett.
,
85
(
21
), pp.
4550
4553
.
52.
Milner
,
S. T.
,
Mcleish
,
T. C. B.
, and
Likhtman
,
A. E.
,
2001
, “
Microscopic Theory of Convective Constraint Release
,”
J. Rheol.
,
45
(
2
), pp.
539
563
.
You do not currently have access to this content.