Abstract

Hydrogel-based biomedical applications are under rapid development. These applications usually demand hydrogels to have high toughness and high fatigue threshold. Recently, various fiber-reinforced composite hydrogels have been developed to meet this challenge. However, the effect of fiber geometry on the fracture and fatigue of composite hydrogels is still elusive. Here, we use a model composite hydrogel to study the influence of fiber width, fiber spacing, and fiber configuration on these properties. It is found that the toughness of the composite hydrogel does not increase monotonically with the fiber width or fiber spacing, but presents a peak. This is because the variation of fiber width and fiber spacing not only affects the volume of fiber in the fracture process zone but also influences the dissipated elastic energy density in that volume, which is affected by the stress concentration. The peak is a consequence of the trade-off between these two factors. Our study further shows that the shape of the fiber network affects the stress concentration in the fiber dramatically, thereby leading to a huge difference in the toughness and fatigue threshold of the composite hydrogels. This work highlights the importance of fiber size as well as the shape of fiber networks on the mechanical properties of composite hydrogels. It may help the design of tough and fatigue-resistant stretchable composite materials.

References

1.
Liu
,
J.
,
Qu
,
S.
,
Suo
,
Z.
, and
Yang
,
W.
,
2021
, “
Functional Hydrogel Coatings
,”
Natl. Sci. Rev.
,
8
(
2
), p.
nwaa254
.
2.
Fenton
,
O. S.
,
Olafson
,
K. N.
,
Pillai
,
P. S.
,
Mitchell
,
M. J.
, and
Langer
,
R.
,
2018
, “
Advances in Biomaterials for Drug Delivery
,”
Adv. Mater
,
30
(
29
), p.
e1705328
.
3.
Lee
,
J. H.
, and
Kim
,
H. W.
,
2018
, “
Emerging Properties of Hydrogels in Tissue Engineering
,”
J. Tissue Eng.
,
9
, p.
2041731418768285
.
4.
Yang
,
C.
, and
Suo
,
Z.
,
2018
, “
Hydrogel Ionotronics
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
125
142
.
5.
Yuk
,
H.
,
Lu
,
B.
, and
Zhao
,
X.
,
2019
, “
Hydrogel Bioelectronics
,”
Chem. Soc. Rev.
,
48
(
6
), pp.
1642
1667
.
6.
Liu
,
X.
,
Liu
,
J.
,
Lin
,
S.
, and
Zhao
,
X.
,
2020
, “
Hydrogel Machines
,”
Mater. Today
,
36
, pp.
102
124
.
7.
Sun
,
B.
,
Jia
,
R.
,
Yang
,
H.
,
Chen
,
X.
,
Tan
,
K.
,
Deng
,
Q.
, and
Tang
,
J.
,
2021
, “
Magnetic Arthropod Millirobots Fabricated by 3D-Printed Hydrogels
,”
Adv. Intell. Syst.
,
4
(
1
), p.
2100139
.
8.
Wang
,
Z.
,
Cong
,
Y.
, and
Fu
,
J.
,
2020
, “
Stretchable and Tough Conductive Hydrogels for Flexible Pressure and Strain Sensors
,”
J. Mater. Chem. B
,
8
(
16
), pp.
3437
3459
.
9.
Yang
,
H.
,
Ji
,
M.
,
Yang
,
M.
,
Shi
,
M.
,
Pan
,
Y.
,
Zhou
,
Y.
,
Qi
,
H. J.
,
Suo
,
Z.
, and
Tang
,
J.
,
2021
, “
Fabricating Hydrogels to Mimic Biological Tissues of Complex Shapes and High Fatigue Resistance
,”
Matter
,
4
(
6
), pp.
1935
1946
.
10.
Wegst
,
U. G.
,
Bai
,
H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2015
, “
Bioinspired Structural Materials
,”
Nat. Mater
,
14
(
1
), pp.
23
36
.
11.
Liu
,
Z.
,
Meyers
,
M. A.
,
Zhang
,
Z.
, and
Ritchie
,
R. O.
,
2017
, “
Functional Gradients and Heterogeneities in Biological Materials: Design Principles, Functions, and Bioinspired Applications
,”
Prog. Mater. Sci.
,
88
, pp.
467
498
.
12.
Tang
,
J.
,
Li
,
J.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2017
, “
Fatigue Fracture of Hydrogels
,”
Extreme Mech. Lett.
,
10
, pp.
24
31
.
13.
Bai
,
R.
,
Yang
,
J.
, and
Suo
,
Z.
,
2019
, “
Fatigue of Hydrogels
,”
Eur. J. Mech. A/Solids
,
74
, pp.
337
370
.
14.
Lin
,
S.
,
Liu
,
X.
,
Liu
,
J.
,
Yuk
,
H.
,
Loh
,
H.-C.
,
Parada
,
G. A.
,
Settens
,
C.
,
Song
,
J.
,
Masic
,
A.
, and
McKinley
,
G. H.
,
2019
, “
Anti-Fatigue-Fracture Hydrogels
,”
Sci. Adv.
,
5
(
1
), p.
eaau8528
.
15.
Lin
,
S.
,
Liu
,
J.
,
Liu
,
X.
, and
Zhao
,
X.
,
2019
, “
Muscle-Like Fatigue-Resistant Hydrogels by Mechanical Training
,”
Proc. Natl. Acad. Sci. U.S.A.
,
116
(
21
), pp.
10244
10249
.
16.
Hua
,
M.
,
Wu
,
S.
,
Ma
,
Y.
,
Zhao
,
Y.
,
Chen
,
Z.
,
Frenkel
,
I.
,
Strzalka
,
J.
,
Zhou
,
H.
,
Zhu
,
X.
, and
He
,
X.
,
2021
, “
Strong Tough Hydrogels Via the Synergy of Freeze-Casting and Salting Out
,”
Nature
,
590
(
7847
), pp.
594
599
.
17.
Liang
,
X.
,
Chen
,
G.
,
Lin
,
S.
,
Zhang
,
J.
,
Wang
,
L.
,
Zhang
,
P.
,
Lan
,
Y.
, and
Liu
,
J.
,
2022
, “
Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels
,”
Adv. Mater
,
34
(
8
), p.
e2107106
.
18.
Wang
,
Z.
,
Xiang
,
C.
,
Yao
,
X.
,
Le Floch
,
P.
,
Mendez
,
J.
, and
Suo
,
Z.
,
2019
, “
Stretchable Materials of High Toughness and Low Hysteresis
,”
Proc. Natl. Acad. Sci. U.S.A.
,
116
(
13
), pp.
5967
5972
.
19.
Xiang
,
C.
,
Wang
,
Z.
,
Yang
,
C.
,
Yao
,
X.
,
Wang
,
Y.
, and
Suo
,
Z.
,
2020
, “
Stretchable and Fatigue-Resistant Materials
,”
Mater. Today
,
34
, pp.
7
16
.
20.
Lavoie
,
S. R.
,
Hassan
,
S.
,
Kim
,
J.
,
Yin
,
T.
, and
Suo
,
Z.
,
2021
, “
Toughness of a Composite in Which Sliding Between Fibers and Matrix is Rate-Sensitive
,”
Extreme Mech. Lett.
,
46
, p.
101317
.
21.
Zhang
,
G.
,
Yin
,
T.
,
Nian
,
G.
, and
Suo
,
Z.
,
2021
, “
Fatigue-Resistant Polyurethane Elastomer Composites
,”
Extreme Mech. Lett.
,
48
, p.
101434
.
22.
Li
,
C.
,
Yang
,
H.
,
Suo
,
Z.
, and
Tang
,
J.
,
2020
, “
Fatigue-Resistant Elastomers
,”
J. Mech. Phys. Solids
,
134
, p.
103751
.
23.
Lake
,
G.
, and
Thomas
,
A.
,
1967
, “
The Strength of Highly Elastic Materials
,”
Proc. R. Soc. London, A
,
300
(
1460
), pp.
108
119
.
24.
Lake
,
G.
,
1995
, “
Fatigue and Fracture of Elastomers
,”
Rubber Chem. Technol.
,
68
(
3
), pp.
435
460
.
25.
Jiang
,
X.
,
Wang
,
Z.
,
Sun
,
D.
,
Lu
,
T.
, and
Wang
,
T.
,
2021
, “
Toughening Mechanism of Unidirectional Stretchable Composite
,”
Front. Robot. AI
,
8
, p.
673307
.
26.
Agrawal
,
A.
,
Rahbar
,
N.
, and
Calvert
,
P. D.
,
2013
, “
Strong Fiber-Reinforced Hydrogel
,”
Acta Biomater.
,
9
(
2
), pp.
5313
5318
.
27.
Lin
,
S.
,
Cao
,
C.
,
Wang
,
Q.
,
Gonzalez
,
M.
,
Dolbow
,
J. E.
, and
Zhao
,
X.
,
2014
, “
Design of Stiff, Tough and Stretchy Hydrogel Composites Via Nanoscale Hybrid Crosslinking and Macroscale Fiber Reinforcement
,”
Soft Matter
,
10
(
38
), pp.
7519
7527
.
28.
King
,
D. R.
,
Sun
,
T. L.
,
Huang
,
Y.
,
Kurokawa
,
T.
,
Nonoyama
,
T.
,
Crosby
,
A. J.
, and
Gong
,
J. P.
,
2015
, “
Extremely Tough Composites From Fabric Reinforced Polyampholyte Hydrogels
,”
Mater. Horiz.
,
2
(
6
), pp.
584
591
.
29.
Liu
,
X.
,
Wu
,
J.
,
Qiao
,
K.
,
Liu
,
G.
,
Wang
,
Z.
,
Lu
,
T.
,
Suo
,
Z.
, and
Hu
,
J.
,
2022
, “
Topoarchitected Polymer Networks Expand the Space of Material Properties
,”
Nat. Commun.
,
13
(
1
), pp.
1
8
.
30.
Gao
,
Y.
,
Wang
,
P.
,
Zhao
,
F.
,
Liu
,
X.
,
Wu
,
J.
, and
Hu
,
J.
,
2022
, “
A Facile Approach for Anisotropic Hydrogel With Light-Regulated Stiffness and Its Application to Achieve Mechanical Toughening
,”
Macromol. Rapid Commun.
,
43
(
10
), p.
2200077
.
31.
Yang
,
C. H.
,
Wang
,
M. X.
,
Haider
,
H.
,
Yang
,
J. H.
,
Sun
,
J. Y.
,
Chen
,
Y. M.
,
Zhou
,
J.
, and
Suo
,
Z.
,
2013
, “
Strengthening Alginate/Polyacrylamide Hydrogels Using Various Multivalent Cations
,”
ACS Appl. Mater. Interfaces
,
5
(
21
), pp.
10418
10422
.
32.
Varaprasad
,
K.
,
Jayaramudu
,
T.
,
Kanikireddy
,
V.
,
Toro
,
C.
, and
Sadiku
,
E. R.
,
2020
, “
Alginate-Based Composite Materials for Wound Dressing Application: A Mini Review
,”
Carbohydr. Polym.
,
236
, p.
116025
.
33.
Zhou
,
X.
,
Li
,
C.
,
Zhu
,
L.
, and
Zhou
,
X.
,
2020
, “
Engineering Hydrogels by Soaking: From Mechanical Strengthening to Environmental Adaptation
,”
Chem. Commun.
,
56
(
89
), pp.
13731
13747
.
34.
Yu
,
H. C.
,
Zheng
,
S. Y.
,
Fang
,
L.
,
Ying
,
Z.
,
Du
,
M.
,
Wang
,
J.
,
Ren
,
K. F.
,
Wu
,
Z. L.
, and
Zheng
,
Q.
,
2020
, “
Reversibly Transforming a Highly Swollen Polyelectrolyte Hydrogel to an Extremely Tough One and Its Application as a Tubular Grasper
,”
Adv. Mater.
,
32
(
49
), p.
e2005171
.
35.
Zhao
,
X.
,
2014
, “
Multi-Scale Multi-Mechanism Design of Tough Hydrogels: Building Dissipation Into Stretchy Networks
,”
Soft Matter
,
10
(
5
), pp.
672
687
.
You do not currently have access to this content.