Abstract

Presliding contacts play an important role in stiffness, damping, and thus dynamic response of assembled structures. Load-dependent nonlinearities in presliding contacts still hinder predictive modeling. Classical models apply only to smooth elastic contacts and a small subset of materials. Recently, the authors tested high density polyethylene (HDPE) inside a scanning electron microscope (SEM) and observed that nonlinearity trends in tangential stiffness and damping deviate from the predictions of the classical models. This discrepancy was attributed to HDPE’s nonlinear viscoplastic response. The aim of this study is to model aforementioned experiments numerically and investigate the influence of nonlinear material response on the presliding response of spherical contacts. A finite element model of a rigid spherical indenter pressed and sheared on a nonlinear viscoplastic half-space is constructed. The indenter geometry and boundary conditions are set in accordance with the experiments, and the constitutive model is tuned to the measured indentation responses. The tuned model delivers a shear response in agreement with the experiments. Accumulated plastic deformations are also found to correlate well with the wear profiles. The model further reveals that nonlinear viscoplasticity dominates tangential stiffness and dissipation at high normal preloads. Our results confirm further that nonlinear material response contributes significantly to the load-dependent nonlinearities in viscoplastic presliding contacts.

References

1.
Sun
,
Y.
,
Yuan
,
J.
,
Pesaresi
,
L.
,
Denimal
,
E.
, and
Salles
,
L.
,
2020
, “
Parametric Study and Uncertainty Quantification of the Nonlinear Modal Properties of Frictional Dampers
,”
ASME J. Vib. Acoust.
,
142
(
5
), p.
051102
.
2.
Fantetti
,
A.
,
Mariani
,
S.
,
Pesaresi
,
L.
,
Nowell
,
D.
,
Cegla
,
F.
, and
Schwingshackl
,
C.
,
2021
, “
Ultrasonic Monitoring of Friction Contacts During Shear Vibration Cycles
,”
Mech. Syst. Signal Process.
,
161
, p.
107966
.
3.
Cenedese
,
M.
,
Axås
,
J.
,
Yang
,
H.
,
Eriten
,
M.
, and
Haller
,
G.
,
2022
, “
Data-Driven Nonlinear Model Reduction to Spectral Submanifolds in Mechanical Systems
,”
Philos. Trans. R. Soc. A
,
380
(
2229
), p.
20210194
.
4.
Eriten
,
M.
,
2012
, “
Multiscale Physics-Based Modeling of Friction
,” Ph.D. thesis,
University of Illinois at Urbana-Champaign
.
5.
Nowell
,
D.
,
Brake
,
M. R.
, and
Eriten
,
M.
,
2018
, “
Considerations for Defining the Mechanisms of Friction
,”
The Mechanics of Jointed Structures
,
M. R. W.
Brake
, ed.,
Springer
,
Cham, Switzerland
, pp.
37
42
.
6.
Cattaneo
,
C.
,
1938
, “
Sul contatto di due corpi elastici: distribuzione locale degli sforzi
,”
Accad. Lincei Rend
.,
27
(
6
), pp.
342
348
.
7.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
(
3
), pp.
259
268
.
8.
Mindlin
,
R.
,
Mason
,
W.
,
Osmer
,
T.
, and
Deresiewicz
,
H.
,
1952
, “
Effects of an Oscillating Tangential Force on the Contact Surfaces of Elastic Spheres
,”
Proceedings of the First US National Congress of Applied Mechanics
,
Chicago, IL
,
June 11–16, 1951
, Vol.
1951
, pp.
203
208
.
9.
Ovcharenko
,
A.
,
Halperin
,
G.
, and
Etsion
,
I.
,
2008
, “
In Situ and Real-Time Optical Investigation of Junction Growth in Spherical Elastic–Plastic Contact
,”
Wear
,
264
(
11–12
), pp.
1043
1050
.
10.
Dini
,
D.
, and
Hills
,
D. A.
,
2009
, “
Frictional Energy Dissipation in a Rough Hertzian Contact
,”
ASME J. Tribol.
,
131
(
2
), p.
021401
.
11.
Etsion
,
I.
,
2010
, “
Revisiting the Cattaneo–Mindlin Concept of Interfacial Slip in Tangentially Loaded Compliant Bodies
,”
ASME J. Appl. Mech.
,
132
(
2
), p.
020801
.
12.
Patil
,
D. B.
, and
Eriten
,
M.
,
2014
, “
Effects of Interfacial Strength and Roughness on the Static Friction Coefficient
,”
Tribol. Lett.
,
56
(
2
), pp.
355
374
.
13.
Patil
,
D. B.
, and
Eriten
,
M.
,
2015
, “
Frictional Energy Dissipation in Spherical Contacts Under Presliding: Effect of Elastic Mismatch, Plasticity and Phase Difference in Loading
,”
ASME J. Appl. Mech.
,
82
(
1
), p.
011005
.
14.
Patil
,
D. B.
, and
Eriten
,
M.
,
2016
, “
Effect of Roughness on Frictional Energy Dissipation in Presliding Contacts
,”
ASME J. Tribol.
,
138
(
1
), p.
011401
.
15.
Usta
,
A. D.
,
Shinde
,
S.
, and
Eriten
,
M.
,
2017
, “
Experimental Investigation of Energy Dissipation in Presliding Spherical Contacts Under Varying Normal and Tangential Loads
,”
ASME J. Tribol.
,
139
(
6
), p.
061402
.
16.
Balaji
,
N. N.
,
Chen
,
W.
, and
Brake
,
M. R.
,
2020
, “
Traction-Based Multi-Scale Nonlinear Dynamic Modeling of Bolted Joints: Formulation, Application, and Trends in Micro-Scale Interface Evolution
,”
Mech. Syst. Signal Process.
,
139
, p.
106615
.
17.
Bazrafshan
,
M.
,
De Rooij
,
M.
,
De Vries
,
E.
, and
Schipper
,
D.
,
2020
, “
Evaluation of Pre-Sliding Behavior at a Rough Interface: Modeling and Experiment
,”
ASME J. Appl. Mech.
,
87
(
4
), p.
041006
.
18.
Jamshidi
,
H.
,
Tavakoli
,
E.
, and
Ahmadian
,
H.
,
2022
, “
Modeling Polymer-Metal Frictional Interface Using Multi-Asperity Contact Theory
,”
Mech. Syst. Signal Process.
,
164
, p.
108227
.
19.
Hartwigsen
,
C. J.
,
Song
,
Y.
,
McFarland
,
D. M.
,
Bergman
,
L.
, and
Vakakis
,
A. F.
,
2004
, “
Experimental Study of Non-Linear Effects in a Typical Shear Lap Joint Configuration
,”
J. Sound Vib.
,
277
(
1–2
), pp.
327
351
.
20.
Lacayo
,
R.
,
Pesaresi
,
L.
,
Groß
,
J.
,
Fochler
,
D.
,
Armand
,
J.
,
Salles
,
L.
,
Schwingshackl
,
C.
,
Allen
,
M.
, and
Brake
,
M.
,
2019
, “
Nonlinear Modeling of Structures With Bolted Joints: A Comparison of Two Approaches Based on a Time-Domain and Frequency-Domain Solver
,”
Mech. Syst. Signal Process.
,
114
, pp.
413
438
.
21.
Deaner
,
B. J.
,
Allen
,
M. S.
,
Starr
,
M. J.
,
Segalman
,
D. J.
, and
Sumali
,
H.
,
2015
, “
Application of Viscous and Iwan Modal Damping Models to Experimental Measurements From Bolted Structures
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021012
.
22.
Wei
,
S.
,
Zhang
,
H.
,
Tangpatjaroen
,
C.
,
Tarnsangpradit
,
J.
,
Usta
,
A.
,
Eriten
,
M.
,
Perepezko
,
J.
, and
Szlufarska
,
I.
,
2021
, “
Wear-Induced Microstructural Evolution of Ultra-Fine Grained (UFGs) Aluminum
,”
Acta Mater.
,
209
, p.
116787
.
23.
Eriten
,
M.
,
Chen
,
S.
,
Usta
,
A. D.
, and
Yerrapragada
,
K.
,
2021
, “
In Situ Investigation of Load-Dependent Nonlinearities in Tangential Stiffness and Damping of Spherical Contacts
,”
ASME J. Tribol.
,
143
(
6
), p.
061501
.
24.
Dabees
,
S.
,
Tirth
,
V.
,
Mohamed
,
A.
, and
Kamel
,
B. M.
,
2021
, “
Wear Performance and Mechanical Properties of MWCNT/HDPE Nanocomposites for Gearing Applications
,”
J. Mater. Res. Technol.
,
12
, pp.
2476
2488
.
25.
Looijmans
,
S. F.
,
Anderson
,
P. D.
, and
van Breemen
,
L. C.
,
2018
, “
Contact Mechanics of High-Density Polyethylene: Effect of Pre-stretch on the Frictional Response and the Onset of Wear
,”
Wear
,
410
, pp.
142
148
.
26.
Briscoe
,
B. J.
,
Pelillo
,
E.
, and
Sinha
,
S. K.
,
1996
, “
Scratch Hardness and Deformation Maps for Polycarbonate and Polyethylene
,”
Polym. Eng. Sci.
,
36
(
24
), pp.
2996
3005
.
27.
Pelto
,
J.
,
Heino
,
V.
,
Karttunen
,
M.
,
Rytöluoto
,
I.
, and
Ronkainen
,
H.
,
2020
, “
Tribological Performance of High Density Polyethylene (HDPE) Composites With Low Nanofiller Loading
,”
Wear
,
460
, p.
203451
.
28.
Xu
,
S.
,
Akchurin
,
A.
,
Liu
,
T.
,
Wood
,
W.
,
Tangpong
,
X.
,
Akhatov
,
I. S.
, and
Zhong
,
W.-H.
,
2015
, “
Mechanical Properties, Tribological Behavior, and Biocompatibility of High-Density Polyethylene/Carbon Nanofibers Nanocomposites
,”
J. Compos. Mater.
,
49
(
12
), pp.
1503
1512
.
29.
Xu
,
S.
, and
Tangpong
,
X.
,
2013
, “
Tribological Behavior of Polyethylene-Based Nanocomposites
,”
J. Mater. Sci.
,
48
(
2
), pp.
578
597
.
30.
Brostow
,
W.
,
Datashvili
,
T.
,
Kao
,
D.
, and
Too
,
J.
,
2010
, “
Tribological Properties of Ldpe+ Boehmite Composites
,”
Polym. Compos.
,
31
(
3
), pp.
417
425
.
31.
Zhang
,
C.
, and
Moore
,
I. D.
,
1997
, “
Nonlinear Mechanical Response of High Density Polyethylene. Part II: Uniaxial Constitutive Modeling
,”
Polym. Eng. Sci.
,
37
(
2
), pp.
414
420
.
32.
Looijmans
,
S. F.
,
de Bie
,
V. G.
,
Anderson
,
P. D.
, and
van Breemen
,
L. C.
,
2019
, “
Hydrostatic Stress As Indicator for Wear Initiation in Polymer Tribology
,”
Wear
,
426
, pp.
1026
1032
.
33.
Liu
,
H.
,
Wang
,
J.
,
Jiang
,
P.
, and
Yan
,
F.
,
2018
, “
Hydrostatic Pressure–Dependent Wear Behavior of Thermoplastic Polymers in Deep Sea
,”
Polym. Adv. Technol.
,
29
(
8
), pp.
2410
2415
.
34.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
35.
Abaqus User Manual
,
2014
, Abaqus Theory Guide, Version 6.14, p.
281
.
36.
Kichenin
,
J.
,
Van Dang
,
K.
, and
Boytard
,
K.
,
1996
, “
Finite-Element Simulation of a New Two-Dissipative Mechanisms Model for Bulk Medium-Density Polyethylene
,”
J. Mater. Sci.
,
31
(
6
), pp.
1653
1661
.
37.
dos Santos
,
B. B.
,
da Costa
,
M. F.
,
Pasqualino
,
I. P.
, and
da Costa
,
C. A.
,
2022
, “
Application of Two-Layer Viscoplasticity Model to Predict a Semicrystalline Polymer Response Under Compression and Microindentation
,”
Polym. Eng. Sci.
,
62
(
4
), pp.
1013
1022
.
38.
Abdel-Wahab
,
A. A.
,
Ataya
,
S.
, and
Silberschmidt
,
V. V.
,
2017
, “
Temperature-Dependent Mechanical Behaviour of PMMA: Experimental Analysis and Modelling
,”
Polym. Test.
,
58
, pp.
86
95
.
39.
Kang
,
J.
,
Becker
,
A. A.
, and
Sun
,
W.
,
2015
, “
Determination of Elastic and Viscoplastic Material Properties Obtained From Indentation Tests Using a Combined Finite Element Analysis and Optimization Approach
,”
Proc. Inst. Mech. Eng. Part L: J. Mater.: Des. Appl.
,
229
(
3
), pp.
175
188
.
40.
Hertz
,
H.
,
1882
, “
Ueber die berührung fester elastischer körper
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
.
41.
MatWeb
,
2022
, “
Overview of materials for High Density Polyethylene (HDPE), Extruded
,” http://www.matweb.com/search/datasheettext.aspx?matguid=482765fad3b443169ec28fb6f9606660, Accessed December 11, 2022.
42.
Haward
,
R.
,
2007
, “
Strain Hardening of High Density Polyethylene
,”
J. Polym. Sci. Part B: Polym. Phys.
,
45
(
9
), pp.
1090
1099
.
43.
Eriten
,
M.
,
Petlicki
,
D.
,
Polycarpou
,
A.
, and
Bergman
,
L.
,
2012
, “
Influence of Friction and Adhesion on the Onset of Plasticity During Normal Loading of Spherical Contacts
,”
Mech. Mater.
,
48
, pp.
26
42
.
44.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2011
, “
Effects of Surface Roughness and Lubrication on the Early Stages of Fretting of Mechanical Lap Joints
,”
Wear
,
271
(
11–12
), pp.
2928
2939
.
45.
Ovcharenko
,
A.
, and
Etsion
,
I.
,
2009
, “
Junction Growth and Energy Dissipation at the Very Early Stage of Elastic–Plastic Spherical Contact Fretting
,”
ASME J. Tribol.
,
131
(
3
), p.
031602
.
46.
Ponter
,
A.
,
Hearle
,
A.
, and
Johnson
,
K.
,
1985
, “
Application of the Kinematical Shakedown Theorem to Rolling and Sliding Point Contacts
,”
J. Mech. Phys. Solids
,
33
(
4
), pp.
339
362
.
47.
Giannakopoulos
,
A.
, and
Suresh
,
S.
,
1998
, “
A Three-Dimensional Analysis of Fretting Fatigue
,”
Acta Mater.
,
46
(
1
), pp.
177
192
.
48.
Ambrico
,
J.
, and
Begley
,
M.
,
2000
, “
Plasticity in Fretting Contact
,”
J. Mech. Phys. Solids
,
48
(
11
), pp.
2391
2417
.
49.
Johnson
,
K. L.
,
1955
, “
Surface Interaction Between Elastically Loaded Bodies Under Tangential Forces
,”
Proc. R. Soc. Lond. Ser. A Math. Phys. Sci.
,
230
(
1183
), pp.
531
548
.
50.
Peacock
,
A.
,
2000
,
Handbook of Polyethylene: Structures: Properties, and Applications
,
CRC Press
,
New York
.
51.
Blau
,
P. J.
,
2008
,
Friction Science and Technology: From Concepts to Applications
,
CRC Press
,
New York
.
52.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1939
, “
The Area of Contact Between Stationary and Moving Surfaces
,”
Proc. R. Soc. Lond. A Math. Phys. Sci.
,
169
(
938
), pp.
391
413
.
53.
Brizmer
,
V.
,
Zait
,
Y.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2006
, “
The Effect of Contact Conditions and Material Properties on Elastic–Plastic Spherical Contact
,”
J. Mech. Mater. Struct.
,
1
(
5
), pp.
865
879
.
54.
Zhao
,
B.
,
Zhang
,
S.
, and
Keer
,
L. M.
,
2017
, “
Spherical Elastic–Plastic Contact Model for Power-Law Hardening Materials Under Combined Normal and Tangential Loads
,”
ASME J. Tribol.
,
139
(
2
), p.
021401
.
55.
Yang
,
H.
, and
Green
,
I.
,
2019
, “
Analysis of Displacement-Controlled Fretting Between a Hemisphere and a Flat Block in Elasto-Plastic Contacts
,”
ASME J. Tribol.
,
141
(
3
), p.
031401
.
56.
Necmi
,
D.
, and
Colak
,
O. U.
,
2006
, “
High Density Polyethylene (HDPE): Experiments and Modeling
,”
Mech. Time-Dependent Mater.
,
10
(
4
), pp.
331
345
.
57.
Zhan-Jiang
,
W.
,
Wen-Zhong
,
W.
,
Hui
,
W.
,
Dong
,
Z.
, and
Yuan-Zhong
,
H.
,
2010
, “
Partial Slip Contact Analysis on Three-Dimensional Elastic Layered Half Space
,”
ASME J. Tribol.
,
132
(
2
), p.
021403
.
58.
Zhanjiang
,
W.
,
Xiaoqing
,
J.
, and
Qian
,
W.
,
2013
, “
Novel Model for Partial-Slip Contact Involving a Material With Inhomogeneity
,”
ASME J. Tribol.
,
135
(
4
), p.
041401
.
59.
Hasan
,
O.
, and
Boyce
,
M.
,
1995
, “
A Constitutive Model for the Nonlinear Viscoelastic Viscoplastic Behavior of Glassy Polymers
,”
Polym. Eng. Sci.
,
35
(
4
), pp.
331
344
.
60.
Han
,
G.
, and
Eriten
,
M.
,
2018
, “
Effect of Relaxation-Dependent Adhesion on Pre-sliding Response of Cartilage
,”
R. Soc. Open Sci.
,
5
(
5
), p.
172051
.
61.
Han
,
G.
,
Eriten
,
M.
, and
Henak
,
C. R.
,
2020
, “
Rate-Dependent Adhesion of Cartilage and Its Relation to Relaxation Mechanisms
,”
J. Mech. Behav. Biomed. Mater.
,
102
, p.
103493
.
62.
Eriten
,
M.
,
Polycarpou
,
A.
, and
Bergman
,
L.
,
2012
, “
A Physics-Based Friction Model and Integration to a Simple Dynamical System
,”
ASME J. Vib. Acoust.
,
134
(
5
), p.
051012
.
63.
Segalman
,
D. J.
,
Allen
,
M. S.
,
Eriten
,
M.
, and
Hoppman
,
K.
,
2015
, “
Experimental Assessment of Joint-Like Modal Models for Structures
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
57181
,
American Society of Mechanical Engineers
, Paper No. V008T13A025.
64.
Arnaud
,
P.
,
Baydoun
,
S.
, and
Fouvry
,
S.
,
2021
, “
Modeling Adhesive and Abrasive Wear Phenomena in Fretting Interfaces: A Multiphysics Approach Coupling Friction Energy, Third Body and Contact Oxygenation Concepts
,”
Tribol. Int.
,
161
, p.
107077
.
65.
Kurt
,
M.
,
Moore
,
K. J.
,
Eriten
,
M.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2017
, “
Nonlinear Model Updating Applied to the Imac Xxxii Round Robin Benchmark System
,”
Mech. Syst. Signal Process.
,
88
, pp.
111
122
.
You do not currently have access to this content.