Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article reveals how apparently similar looking nanoparticles with same size, shape, and mass may exhibit widely varying Brownian diffusivity due to inherent features of nanoscale dynamics. Such variabilities may, in certain cases, reach order of magnitude fluctuations depending on the interfacial and bulk properties of the Brownian body. Accordingly, the theory explains several unanswered questions in connection to submicron systems including anomalous thermal properties of nanofluids and strangely varying transmittivities of biologically originated particulate droplets.

References

1.
Lei
,
Q.-L.
,
Zheng
,
W.
,
Tang
,
F.
,
Wan
,
X.
,
Ni
,
R.
, and
Ma
,
Y.-q.
,
2021
, “
Self-Assembly of Isostatic Self-Dual Colloidal Crystals
,”
Phys. Rev. Lett.
,
127
(
1
), p.
018001
.
2.
Liu
,
T.
,
Langston
,
M. L. K.
,
Li
,
D.
,
Pigga
,
J. M.
,
Pichon
,
C.
,
Todea
,
A. M.
, and
Mueller
,
A.
,
2011
, “
Self-Recognition Among Different Polyprotic Macroions During Assembly Processes in Dilute Solution
,”
Science
,
331
(
6024
), pp.
1590
1592
.
3.
Ikkala
,
O.
, and
ten Brinke
,
G.
,
2002
, “
Functional Materials Based on Self-Assembly of Polymeric Supramolecules
,”
Science
,
295
(
5564
), pp.
2407
2409
.
4.
Cooley
,
M.
,
Sarode
,
A.
,
Hoore
,
M.
,
Fedosov
,
D. A.
,
Mitragotri
,
S.
, and
Sen Gupta
,
A.
,
2018
, “
Influence of Particle Size and Shape on Their Margination and Wall-Adhesion: Implications in Drug Delivery Vehicle Design Across Nano-to-Micro Scale
,”
Nanoscale
,
10
(
32
), pp.
15350
15364
.
5.
Lavrentovich
,
O. D.
,
Lazo
,
I.
, and
Pishnyak
,
O. P.
,
2010
, “
Nonlinear Electrophoresis of Dielectric and Metal Spheres in a Nematic Liquid Crystal
,”
Nature
,
467
(
7318
), pp.
947
950
.
6.
Skaug
,
M. J.
,
Schwemmer
,
C.
,
Fringes
,
S.
,
Rawlings
,
C. D.
, and
Knoll
,
A. W.
,
2018
, “
Nanofluidic Rocking Brownian Motors
,”
Science
,
359
(
6383
), pp.
1505
1508
.
7.
Sharifi-Mood
,
N.
,
Koplik
,
J.
, and
Maldarelli
,
C.
,
2013
, “
Molecular Dynamics Simulation of the Motion of Colloidal Nanoparticles in a Solute Concentration Gradient and a Comparison to the Continuum Limit
,”
Phys. Rev. Lett.
,
111
(
18
), p.
184501
.
8.
Wang
,
C. C.
,
Prather
,
K. A.
,
Sznitman
,
J.
,
Jimenez
,
J. L.
,
Lakdawala
,
S. S.
,
Tufekci
,
Z.
, and
Marr
,
L. C.
,
2021
, “
Airborne Transmission of Respiratory Viruses
,”
Science
,
373
(
6558
). p.
eabd9149
.
9.
Zhu
,
H.
,
2013
, “
Infectivity, Transmission, and Pathology of Human-Isolated H7N9 Influenza Virus in Ferrets and Pigs
,”
Science
,
341
(
6149
), p.
959
. DOI: 10.1126/science.1239844
10.
Richard
,
M.
,
Schrauwen
,
E. J. A.
,
de Graaf
,
M.
, Bestebroer, T. M., Spronken, M. I. J., van Boheemen, S., de Meulder, D., et al.,
2013
, “
Limited Airborne Transmission of H7N9 Influenza A Virus Between Ferrets
,”
Nature
,
501
(
7468
), pp.
560
563
.
11.
Imai
,
M.
,
Watanabe
,
T.
,
Hatta
,
M.
, Das, S. C., Ozawa, M., Shinya, K., Zhong, G., et al.,
2012
, “
Experimental Adaptation of an Influenza H5 HA Confers Respiratory Droplet Transmission to a Reassortant H5 HA/H1N1 Virus in Ferrets
,”
Nature
,
486
(
7403
), pp.
420
428
.
12.
Chen
,
G.
,
2001
, “
Ballistic-Diffusive Heat-Conduction Equations
,”
Phys. Rev. Lett.
,
86
(
11
), pp.
2297
2300
.
13.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
718
720
.
14.
Kincaid
,
J. M.
, and
Cohen
,
E. G. D.
,
2002
, “
Nano- and Pico-Scale Transport Phenomena in Fluids
,”
J. Stat. Phys.
,
109
(
3/4
), pp.
361
371
.
15.
Marconnet
,
A. M.
,
Panzer
,
M. A.
, and
Goodson
,
K. E.
,
2013
, “
Thermal Conduction Phenomena in Carbon Nanotubes and Related Nanostructured Materials
,”
Rev. Mod. Phys.
,
85
(
3
), pp.
1295
1326
.
16.
Kostek
,
S.
,
Schwartz
,
L. M.
, and
Johnson
,
D. L.
,
1992
, “
Fluid Permeability in Porous Media: Comparison of Electrical Estimates With Hydrodynamical Calculations
,”
Phys. Rev. B
,
45
(
1
), pp.
186
195
.
17.
Hansen
,
J. S.
,
Dyre
,
J. C.
, and
Daivis
,
P.
,
2015
, “
Continuum Nanofluidics
,”
Langmuir
,
31
(
49
), pp.
13275
13289
.
18.
Liu
,
B.
, and
Bhattacharya
,
S.
,
2020
, “
Vector Field Solution for Brinkman Equation in Presence of Disconnected Spheres
,”
Phys. Rev. Fluids
,
5
(
10
), p.
104303
.
19.
Premlata
,
A. R.
, and
Wei
,
H. H.
,
2019
, “
The Basset Problem With Dynamic Slip: Slip-Induced Memory Effect and Slip-Stick Transition
,”
J. Fluids Mech.
,
866
(
1
), pp.
431
449
.
20.
Pulkrabek
,
W. W.
, and
Wabrek
,
R. M.
,
1990
, “
The Permeability of Alumina Over an Extended Temperature Range
,”
Int. J. Thermophys.
,
11
(
1
), pp.
431
449
.
21.
Bhattacharya
,
S.
, and
Gurung
,
D.
,
2010
, “
Derivation of Governing Equation Describing Time-Dependent Penetration Length in Channel Flows Driven by Non-Mechanical Forces
,”
Anal. Chim. Acta
,
666
(
1–2
), pp.
51
54
.
22.
Bhattacharya
,
S.
,
Gurung
,
D.
, and
Navardi
,
S.
,
2013
, “
Radial Lift on a Suspended Finite-Sized Sphere Due to Fluid Inertia for Low-Reynolds-Number Flow Through a Cylinder
,”
J. Fluid Mech.
,
722
(
1
), pp.
159
186
.
23.
Bhattacharya
,
S.
,
Gurung
,
D.
, and
Navardi
,
S.
,
2013
, “
Radial Distribution and Axial Dispersion of Suspended Particles Inside a Narrow Cylinder Due to Mildly Inertial Flow
,”
Phys. Fluids
,
25
(
3
), p.
033304
.
24.
Steiner
,
U.
,
Meller
,
A.
, and
Stavans
,
J.
,
1995
, “
Entropy Driven Phase Separation in Binary Emulsions
,”
Phys. Rev. Lett.
,
74
(
23
), p.
021504
.
25.
Indei
,
T.
,
Schieber
,
J.
, and
Cordoba
,
A.
,
2012
, “
Treating Inertia in Passive Microbead Rheology
,”
Phys. Rev. E
,
85
(
2
), p.
021504
.
You do not currently have access to this content.