Abstract

This tutorial examines the failure theories of Tresca and von Mises, both of which are crucial for designing metallic structures. Conventionally, Tresca is regarded as more conservative than von Mises from a deterministic perspective. This tutorial, however, introduces a different viewpoint, presenting a scenario where von Mises’ theory may appear more conservative when variability in the mechanical system parameters is considered. This often-overlooked aspect is not extensively addressed in standard textbooks on solid mechanics and the strength of materials. The tutorial aims to shed light on the non-negligible probability where von Mises’ criterion yields a smaller equivalent stress than Tresca, thus being more conservative. It underscores the importance of integrating probabilistic considerations into stress analyses of solids, offering valuable insights for the education of structural mechanics.

References

1.
Williams
,
J. F.
, and
Svensson
,
N. L.
,
1971
, “
A Rationally Based Yield Criterion for Work Hardening Materials
,”
Meccanica
,
6
, pp.
104
114
.
2.
Clausmeyer
,
H.
,
Kussmaul
,
K.
, and
Roos
,
E.
,
1991
, “
Influence of Stress State on the Failure Behavior of Cracked Components Made of Steel
,”
ASME Appl. Mech. Rev.
,
44
(
2
), pp.
77
92
.
3.
Yu
,
M.-H.
,
2002
, “
Advances in Strength Theories for Materials Under Complex Stress State in the 20th Century
,”
ASME Appl. Mech. Rev.
,
55
(
3
), pp.
169
218
.
4.
Avilés
,
J.
, and
Pérez-Rocha
,
L. E.
,
2005
, “
Design Concepts for Yielding Structures on Flexible Foundation
,”
Eng. Struct.
,
27
(
3
), pp.
443
454
.
5.
Christensen
,
R. M.
,
2013
,
The Theory of Materials Failure
,
Oxford University Press
,
Oxford
.
6.
Farzampour
,
A.
, and
Eatherton
,
M. R.
,
2019
, “
Yielding and Lateral Torsional Buckling Limit States for Butterfly-Shaped Shear Links
,”
Eng. Struct.
,
180
, pp.
442
451
.
7.
Prager
,
W.
,
1953
, “
On the Use of Singular Yield Conditions and Associated Flow Rules
,”
ASME J. Appl. Mech.
,
20
(
3
), pp.
317
320
.
8.
Hosford
,
W. F.
,
1972
, “
A Generalized Isotropic Yield Criterion
,”
ASME J. Appl. Mech.
,
39
(
2
), pp.
607
609
.
9.
Christensen
,
R. M.
,
2016
, “
Perspective on Materials Failure Theory and Applications
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111001
.
10.
Ding
,
B.
, and
Li
,
X.
,
2017
, “
An Eccentric Ellipse Failure Criterion for Amorphous Materials
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081005
.
11.
Christensen
,
R. M.
,
2020
, “
The Failure Theory for Isotropic Materials: Proof and Completion
,”
ASME J. Appl. Mech.
,
87
(
5
), p.
051001
.
12.
Crandall
,
S. H.
,
Dahl
,
N. C.
,
Lardner
,
T. J.
, and
Sivakumar
,
M. S.
,
2012
,
An Introduction to Mechanics of Solids: (In SI Units)
, 3rd ed.,
McGraw Hill Education Private Limited
,
Uttar Pradesh
.
13.
Den Hartog
,
J. P.
,
1961
,
Strength of Materials
, reprinted ed.,
Dover Publications
,
Mineola
.
14.
Heyman
,
J.
,
1998
,
Structural Analysis: A Historical Approach
, illustrated ed.,
Cambridge University Press
,
Cambridge
.
15.
Goodno
,
B. J.
, and
Gere
,
J. M.
,
2017
,
Mechanics of Materials
, 9th ed.,
Cengage Learning
,
Boston, MA
.
16.
Hibbeler
,
R.
,
2016
,
Mechanics of Materials
, 10th ed.,
Pearson
,
London
.
17.
Timoshenko
,
S.
,
2002
,
Strength of Materials, Part 2: Advanced Theory and Problems
, 3rd ed. ed.,
CBS Publishers & Distributors Pvt Ltd
,
Bengaluru, India
.
18.
Timoshenko
,
S. P.
,
1983
,
History of Strength of Materials
,
Dover Publications
,
Mineola, NY
.
19.
Elishakoff
,
I.
,
2017
,
Probabilistic Methods in the Theory of Structures
, 2nd ed.,
Dover Publications
,
Mineola, NY
.
20.
Cunha Jr
,
A.
,
2017
, “Modeling and Quantification of Physical Systems Uncertainties in a Probabilistic Framework,”
Probabilistic Prognostics and Health Management of Energy Systems
,
Ekwaro-Osire
,
S.
,
Goncalves
,
A. C.
, and
Alemayehu
,
F. M.
, eds.,
Springer International Publishing
,
New York
, pp.
127
156
.
21.
Soize
,
C.
,
2017
,
Uncertainty Quantification: An Accelerated Course With Advanced Applications in Computational Engineering
,
Springer
,
Heidelberg
.
22.
Yanik
,
Y.
,
da Silva
,
S.
, and
Cunha Jr
,
A.
,
2018
, “
Uncertainty Quantification in the Comparison of Structural Criterions of Failure
,”
X Congresso Nacional de Engenharia Mecânica (CONEM 2018)
,
Salvador
,
May 20–24
, pp.
2
18
.
23.
Stokes
,
V. K.
,
1981
, “
On the Space of Stress Invariants
,”
ASME J. Appl. Mech.
,
48
(
3
), pp.
664
666
.
24.
Cunha Jr
,
A.
,
Nasser
,
R.
,
Sampaio
,
R.
,
Lopes
,
H.
, and
Breitman
,
K.
,
2014
, “
Uncertainty Quantification Through Monte Carlo Method in a Cloud Computing Setting
,”
Comput. Phys. Commun.
,
185
(
5
), pp.
1355
1363
.
25.
Kroese
,
D. P.
,
Taimre
,
T.
, and
Botev
,
Z. I.
,
2013
,
Handbook of Monte Carlo Methods
, Vol.
706
,
John Wiley & Sons
,
Hoboken, NJ
.
26.
Institution
,
B. S.
,
2003
,
Structural Use of Steelwork in Building: Code of Practice for Fire Resistant Design
,
British Standards Institution
,
London
.
27.
e Trasporti
,
M. I.
,
2008
, “NTC (2008) Norme Tecniche per le Costruzioni,” D.M. Ministero Infrastrutture e Trasporti 14 gennaio 2008, G.U.R.I. 4 Febbraio 2008, Roma (in Italian).
28.
Raizer
,
V.
, and
Elishakoff
,
I.
,
2022
,
Philosophies of Structural Safety and Reliability
,
Taylor & Francis
,
Milton Park
.
29.
Baker
,
J.
, and
Heyman
,
J.
,
1980
,
Plastic Design of Frames: Volume 1, Fundamentals
,
Cambridge University Press
,
Cambridge
.
30.
Heyman
,
J.
,
2008
,
Plastic Design of Frames: Volume 2, Applications
,
Cambridge University Press
,
Cambridge
.
31.
Popov
,
E.
,
1998
,
Engineering Mechanics of Solids
, 2nd ed.,
Pearson
,
London
.
32.
Cunha Jr
,
A.
,
Yanik
,
Y.
,
Olivieri
,
C.
, and
da Silva
,
S.
,
2023
, “
FAILURE
,” https://americocunhajr.github.io/FAILURE, Accessed July 13, 2023.
You do not currently have access to this content.