Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In this work, we apply a phase-field modeling framework to elucidate the interplay between nucleation and kinetics in the dynamic evolution of twinning interfaces. The key feature of this phase-field approach is the ability to transparently and explicitly specify nucleation and kinetic behavior in the model, in contrast to other regularized interface models. We use this to study two distinct problems where it is essential to explicitly specify the kinetic and nucleation behavior governing twin evolution. First, we study twinning interfaces in 2D. When these interfaces are driven to move, we find that significant levels of twin nucleation occur ahead of the moving interface. Essentially, the finite interface velocity and the relaxation time of the stresses ahead of the interface allow for nucleation to occur before the interface is able to propagate to that point. Second, we study the growth of needle twins in antiplane elasticity. We show that both nucleation and anisotropic kinetics are essential to obtain predictions of needle twins. While standard regularized interface approaches do not permit the transparent specification of anisotropic kinetics, this is readily possible with the phase-field approach that we have used here.

References

1.
Porter
,
D. A.
, and
Easterling
,
K. E.
,
2009
,
Phase Transformations in Metals and Alloys
(revised reprint),
CRC Press
,
Boca Raton, FL
.
2.
Abeyaratne
,
R.
, and
Knowles
,
J. K.
,
2006
,
Evolution of Phase Transitions: A Continuum Theory
,
Cambridge University Press
,
New York
.
3.
Jiao
,
S.
, and
Kulkarni
,
Y.
,
2015
, “
Molecular Dynamics Study of Creep Mechanisms in Nanotwinned Metals
,”
Comput. Mater. Sci.
,
110
, pp.
254
260
.
4.
Jiao
,
S.
, and
Kulkarni
,
Y.
,
2018
, “
Radiation Tolerance of Nanotwinned Metals—An Atomistic Perspective
,”
Comput. Mater. Sci.
,
142
, pp.
290
296
.
5.
Sinha
,
T.
, and
Kulkarni
,
Y.
,
2014
, “
Alternating Brittle and Ductile Response of Coherent Twin Boundaries in Nanotwinned Metals
,”
J. Appl. Phys.
,
116
(
18
), p.
183505
.
6.
Kulkarni
,
Y.
, and
Asaro
,
R. J.
,
2009
, “
Are Some Nanotwinned FCC Metals Optimal for Strength, Ductility and Grain Stability?
,”
Acta Mater.
,
57
(
16
), pp.
4835
4844
.
7.
Faran
,
E.
, and
Shilo
,
D.
,
2011
, “
The Kinetic Relation for Twin Wall Motion in Nimnga
,”
J. Mech. Phys. Solids
,
59
(
5
), pp.
975
987
.
8.
Abeyaratne
,
R.
, and
Knowles
,
J. K.
,
1990
, “
On the Driving Traction Acting on a Surface of Strain Discontinuity in a Continuum
,”
J. Mech. Phys. Solids
,
38
(
3
), pp.
345
360
.
9.
Abeyaratne
,
R.
, and
Knowles
,
J. K.
,
1991
, “
Kinetic Relations and the Propagation of Phase Boundaries in Solids
,”
Arch. Ration. Mech. Anal.
,
114
(
2
), pp.
119
154
.
10.
Truskinovskii
,
L.
,
1982
, “
Equilibrium Phase Interfaces
,”
Sov. Phys. Dokl.
,
27
, pp.
551
552
.
11.
Truskinovsky
,
L.
,
1993
, “Kinks Versus Shocks,”
Shock Induced Transitions and Phase Structures in General Media
,
J. E.
Dunn
,
R.
Fosdick
, and
M.
Slemrod
, eds.,
Springer
,
New York
, pp.
185
229
.
12.
Rosakis
,
P.
, and
Knowles
,
J. K.
,
1997
, “
Unstable Kinetic Relations and the Dynamics of Solid–Solid Phase Transitions
,”
J. Mech. Phys. Solids
,
45
(
11
), pp.
2055
2081
.
13.
Hou
,
T. Y.
,
Rosakis
,
P.
, and
LeFloch
,
P.
,
1999
, “
A Level-Set Approach to the Computation of Twinning and Phase-Transition Dynamics
,”
J. Comput. Phys.
,
150
(
2
), pp.
302
331
.
14.
Abeyaratne
,
R.
, and
Knowles
,
J. K.
,
1991
, “
Implications of Viscosity and Strain-Gradient Effects for the Kinetics of Propagating Phase Boundaries in Solids
,”
SIAM J. Appl. Math.
,
51
(
5
), pp.
1205
1221
.
15.
Rosakis
,
P.
,
1995
, “
An Equal Area Rule for Dissipative Kinetics of Propagating Strain Discontinuities
,”
SIAM J. Appl. Math.
,
55
(
1
), pp.
100
123
.
16.
Turteltaub
,
S.
,
1997
, “
Viscosity of Strain Gradient Effects on the Kinetics of Propagating Phase Boundaries in Solids
,”
J. Elast.
,
46
(
1
), pp.
53
90
.
17.
Fried
,
E.
, and
Gurtin
,
M. E.
,
1994
, “
Dynamic Solid-Solid Transitions With Phase Characterized by an Order Parameter
,”
Physica D
,
72
(
4
), pp.
287
308
.
18.
Yang
,
L.
, and
Dayal
,
K.
,
2010
, “
Formulation of Phase-Field Energies for Microstructure in Complex Crystal Structures
,”
Appl. Phys. Lett.
,
96
(
8
), p.
081916
.
19.
Clayton
,
J. D.
, and
Knap
,
J.
,
2011
, “
A Phase Field Model of Deformation Twinning: Nonlinear Theory and Numerical Simulations
,”
Physica D
,
240
(
9
), pp.
841
858
.
20.
Karma
,
A.
,
Kessler
,
D. A.
, and
Levine
,
H.
,
2001
, “
Phase-Field Model of Mode III Dynamic Fracture
,”
Phys. Rev. Lett.
,
87
(
4
), p.
045501
.
21.
Clayton
,
J. D.
, and
Knap
,
J.
,
2014
, “
A Geometrically Nonlinear Phase Field Theory of Brittle Fracture
,”
Int. J. Fracture
,
189
(
2
), pp.
139
148
.
22.
Penrose
,
O.
, and
Fife
,
P. C.
,
1990
, “
Thermodynamically Consistent Models of Phase-Field Type for the Kinetic of Phase Transitions
,”
Physica D
,
43
(
1
), pp.
44
62
.
23.
Hakimzadeh
,
M.
,
Agrawal
,
V.
,
Dayal
,
K.
, and
Mora-Corral
,
C.
,
2022
, “
Phase-Field Finite Deformation Fracture With an Effective Energy for Regularized Crack Face Contact
,”
J. Mech. Phys. Solids
,
167
, p.
104994
.
24.
Agrawal
,
V.
, and
Dayal
,
K.
,
2017
, “
Dependence of Equilibrium Griffith Surface Energy on Crack Speed in Phase-Field Models for Fracture Coupled to Elastodynamics
,”
Int. J. Fracture
,
207
, pp.
243
249
.
25.
Dayal
,
K.
, and
Bhattacharya
,
K.
,
2007
, “
A Real-Space Non-local Phase-Field Model of Ferroelectric Domain Patterns in Complex Geometries
,”
Acta Mater.
,
55
(
6
), pp.
1907
1917
.
26.
Chua
,
J.
,
Karimi
,
M.
,
Kozlowski
,
P.
,
Massoudi
,
M.
,
Narasimhachary
,
S.
,
Kadau
,
K.
,
Gazonas
,
G.
, and
Dayal
,
K.
,
2024
, “
Deformation Decomposition Versus Energy Decomposition for Chemo- and Poro-mechanics
,”
J. Appl. Mech.
,
91
(
1
), p.
014501
.
27.
Karimi
,
M.
,
Massoudi
,
M.
,
Walkington
,
N.
,
Pozzi
,
M.
, and
Dayal
,
K.
,
2022
, “
Energetic Formulation of Large-Deformation Poroelasticity
,”
Int. J. Numer. Anal. Methods Geomech.
,
46
(
5
), pp.
910
932
.
28.
Karimi
,
M.
,
Massoudi
,
M.
,
Dayal
,
K.
, and
Pozzi
,
M.
,
2023
, “
High-Dimensional Nonlinear Bayesian Inference of Poroelastic Fields From Pressure Data
,”
Math. Mech. Solids
,
28
(
9
), pp.
2108
2131
.
29.
Clayton
,
J.
,
Leavy
,
R.
, and
Knap
,
J.
,
2023
, “
Phase Field Theory for Pressure-Dependent Strength in Brittle Solids With Dissipative Kinetics
,”
Mech. Res. Commun.
,
129
, p.
104097
.
30.
Clayton
,
J. D.
,
2024
, “A Universal Phase-Field Mixture Representation of Thermodynamics and Shock Wave Mechanics in Porous Soft Biologic Continua,”
arXiv:2403.04995
. https://arxiv.org/abs/2403.04995
31.
Agrawal
,
V.
, and
Dayal
,
K.
,
2015
, “
A Dynamic Phase-Field Model for Structural Transformations and Twinning: Regularized Interfaces With Transparent Prescription of Complex K inetics and Nucleation. Part I: Formulation and One-Dimensional Characterization
,”
J. Mech. Phys. Solids
,
85
, pp.
270
290
.
32.
Agrawal
,
V.
, and
Dayal
,
K.
,
2015
, “
A Dynamic Phase-field Model for Structural Transformations and Twinning: Regularized Interfaces With Transparent Prescription of Complex Kinetics and Nucleation. Part II: Two-Dimensional Characterization and Boundary Kinetics
,”
J. Mech. Phys. Solids
,
85
, pp.
291
307
.
33.
Chua
,
J.
,
Agrawal
,
V.
,
Breitzman
,
T.
,
Gazonas
,
G.
, and
Dayal
,
K.
,
2022
, “
Phase-Field Modeling and Peridynamics for Defect Dynamics, and an Augmented Phase-Field Model With Viscous Stresses
,”
J. Mech. Phys. Solids
,
159
, p.
104716
.
34.
Naghibzadeh
,
S. K.
,
Walkington
,
N.
, and
Dayal
,
K.
,
2021
, “
Surface Growth in Deformable Solids Using an Eulerian Formulation
,”
J. Mech. Phys. Solids
,
154
, p.
104499
.
35.
Naghibzadeh
,
S. K.
,
Walkington
,
N.
, and
Dayal
,
K.
,
2022
, “
Accretion and Ablation in Deformable Solids With an Eulerian Description: Examples Using the Method of Characteristics
,”
Math. Mech. Solids
,
27
(
6
), pp.
989
1010
.
36.
Freed
,
A. D.
,
Zamani
,
S.
,
Szabó
,
L.
, and
Clayton
,
J. D.
,
2020
, “
Laplace Stretch: Eulerian and Lagrangian Formulations
,”
Z. für Angew. Math. Phys.
,
71
(
5
), Article Number
157
.
37.
Clayton
,
J.
,
2013
, “
Nonlinear Eulerian Thermoelasticity for Anisotropic Crystals
,”
J. Mech. Phys. Solids
,
61
(
10
), pp.
1983
2014
.
38.
Alber
,
H.-D.
, and
Zhu
,
P.
,
2005
, “
Solutions to a Model With Nonuniformly Parabolic Terms for Phase Evolution Driven by Configurational Forces
,”
SIAM J. Appl. Math.
,
66
(
2
), pp.
680
699
.
39.
Guin
,
L.
, and
Kochmann
,
D. M.
,
2023
, “
A Phase-Field Model for Ferroelectrics With General Kinetics, Part I: Model Formulation
,”
J. Mech. Phys. Solids
,
176
, p.
105301
.
40.
Şengül
,
Y.
,
2021
, “
Nonlinear Viscoelasticity of Strain Rate Type: An Overview
,”
Proc. R. Soc. A
,
477
(
2245
), p.
20200715
.
41.
Alnaes
,
M.
,
Blechta
,
J.
,
Hake
,
J.
,
Johansson
,
A.
,
Kehlet
,
B.
,
Logg
,
A.
,
Richardson
,
C.
,
Ring
,
J.
,
Rognes
,
M. E.
, and
Wells
,
G. N.
,
2015
, “
The Fenics Project Version 1.5
,”
Arch. Numer. Softw.
,
3
(
100
), pp.
9
23
.
42.
Logg
,
A.
,
Mardal
,
K.-A.
, and
Wells
,
G.
,
2012
,
Automated Solution of Differential Equations by the Finite Element Method
,
Springer
,
Heidelberg
.
43.
Dayal
,
K.
, and
Bhattacharya
,
K.
,
2006
, “
Kinetics of Phase Transformations in the Peridynamic Formulation of Continuum Mechanics
,”
J. Mech. Phys. Solids
,
54
(
9
), pp.
1811
1842
.
44.
Clayton
,
J. D.
,
2010
,
Nonlinear Mechanics of Crystals
, Vol. 177,
Springer Science & Business Media
.
45.
Cai
,
W.
,
Meng
,
X.
,
Zheng
,
Y.
,
Zhang
,
J.
, and
Zhao
,
L.
,
2006
, “
Interface Structure and Mobility in Martensitic Shape Memory Alloys
,”
Mater. Sci. Eng. A
,
438
, pp.
900
904
.
46.
Tsai
,
H.
, and
Rosakis
,
P.
,
1994
, “
On Anisotropic Compressible Materials That Can Sustain Elastodynamic Anti-plane Shear
,”
J. Elast.
,
35
(
1
), pp.
213
222
.
47.
Tsai
,
H.
, and
Rosakis
,
P.
,
2001
, “
Quasi-steady Growth of Twins Under Stress
,”
J. Mech. Phys. Solids
,
49
(
2
), pp.
289
312
.
48.
Rosakis
,
P.
, and
Tsai
,
H.
,
1995
, “
Dynamic Twinning Processes in Crystals
,”
Int. J. Solids Struct.
,
32
(
17–18
), pp.
2711
2723
.
49.
Faye
,
A.
,
Rodríguez-Martínez
,
J. A.
, and
Volokh
,
K.
,
2017
, “
Spherical Void Expansion in Rubber-Like Materials: The Stabilizing Effects of Viscosity and Inertia
,”
Int. J. Non-Linear Mech.
,
92
, pp.
118
126
.
You do not currently have access to this content.