Abstract

A geometrical and mechanical design strategy is proposed for bioelectronics to improve wearability and comfort by reducing the magnitude of interfacial stresses and ensuring that the spatial stress distributions are below the somatosensory threshold for skin sensitivity. Conceptually, bioelectronic devices with soft polymeric encapsulations and internal rigid electronic components result in a mechanically hybrid composite structure, with intrinsically soft mechanics to facilitate integration with biological tissues through mechanical compliance. For accurate signal acquisition and sensing in curvilinear regions (e.g., limbs, chest, forehead), bioelectronic devices are pressed and bent to closely match the skin morphology, resulting in additional interfacial stresses. In the present work, we demonstrate how curvature-matching designs for the bioelectronic–skin interface can reduce the resulting normal and shear stresses generated from device adhesion and skin stretching during dynamic motions. Finite element modeling of the skin curvature, encapsulation, and internal electronic layouts was used to quantify the spatial distribution of the underlying stresses at the skin interface based on a mismatch curvature angle θ between the device and skin. The results show that curvature-matching designs for selected cases of θ = 30 deg and 60 deg can reduce the normal and shear stresses by up to 45% and 70%, respectively, even for a stretch of up to λ = 1.3. The proposed curvature-matching design strategy can inform the future design of user-specific bioelectronics to create anatomically compatible geometrical layouts that enhance mechanical compliance and enable physiological monitoring and integration in curved body structures.

References

1.
Zhu
,
P.
,
Peng
,
H.
, and
Rwei
,
A. Y.
,
2022
, “
Flexible, Wearable Biosensors for Digital Health
,”
Med. Nov. Technol. Devices
,
14
(
January
), p.
100118
.
2.
Liu
,
Y.
,
Pharr
,
M.
, and
Salvatore
,
G. A.
,
2017
, “
Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring
,”
ACS Nano
,
11
(
10
), pp.
9614
9635
.
3.
Li
,
X.
,
Dunn
,
J.
,
Salins
,
D.
,
Zhou
,
G.
,
Zhou
,
W.
,
Schüssler-Fiorenza Rose
,
S. M.
,
Perelman
,
D.
, et al
,
2017
, “
Digital Health: Tracking Physiomes and Activity Using Wearable Biosensors Reveals Useful Health-Related Information
,”
PLoS Biol.
,
15
(
1
), pp.
1
30
.
4.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.
5.
Lu
,
N.
, and
Yang
,
S.
,
2015
, “
Mechanics for Stretchable Sensors
,”
Curr. Opin. Solid State Mater. Sci.
,
19
(
3
), pp.
149
159
.
6.
Ma
,
Y.
,
Feng
,
X.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2017
, “
Design and Application of “J-Shaped” Stress-Strain Behavior in Stretchable Electronics: A Review
,”
Lab Chip
,
17
(
10
), pp.
1689
1704
.
7.
Chung
,
H. U.
,
Rwei
,
A. Y.
,
Hourlier-Fargette
,
A.
,
Xu
,
S.
,
Lee
,
K.
,
Dunne
,
E. C.
,
Xie
,
Z.
, et al
,
2020
, “
Skin-Interfaced Biosensors for Advanced Wireless Physiological Monitoring in Neonatal and Pediatric Intensive-Care Units
,”
Nat. Med.
,
26
(
3
), pp.
418
429
.
8.
Kwak
,
S. S.
,
Yoo
,
S.
,
Avila
,
R.
,
Chung
,
H. U.
,
Jeong
,
H.
,
Liu
,
C.
,
Vogl
,
J. L.
, et al
,
2021
, “
Skin-Integrated Devices With Soft, Holey Architectures for Wireless Physiological Monitoring, With Applications in the Neonatal Intensive Care Unit
,”
Adv. Mater.
,
33
(
44
), pp.
1
14
.
9.
Liu
,
C.
,
Kim
,
J. T.
,
Kwak
,
S. S.
,
Hourlier-Fargette
,
A.
,
Avila
,
R.
,
Vogl
,
J.
,
Tzavelis
,
A.
, et al
,
2021
, “
Wireless, Skin-Interfaced Devices for Pediatric Critical Care: Application to Continuous, Noninvasive Blood Pressure Monitoring
,”
Adv. Healthc. Mater.
,
10
(
17
), pp.
1
16
.
10.
Ling
,
Y.
,
Zhao
,
G.
,
Su
,
Y.
,
Wu
,
Q.
,
Xu
,
Y.
,
Chen
,
Z.
,
Arends
,
B.
, et al
,
2023
, “
Skin-Inspired Porous Mesh Bioelectronics With Built-In Multifunctionality for Concurrently Monitoring Heart Electrical and Mechanical Functions
,”
Adv. Funct. Mater.
,
33
(
41
), pp.
1
9
.
11.
Choi
,
Y. S.
,
Jeong
,
H.
,
Yin
,
R. T.
,
Avila
,
R.
,
Pfenniger
,
A.
,
Yoo
,
J.
,
Lee
,
J. Y.
, et al
,
2022
, “
A Transient, Closed-Loop Network of Wireless, Body-Integrated Devices for Autonomous Electrotherapy
,”
Science
,
376
(
6596
), pp.
1006
1012
.
12.
Kim
,
H.
,
Kim
,
Y. S.
,
Mahmood
,
M.
,
Kwon
,
S.
,
Zavanelli
,
N.
,
Kim
,
H. S.
,
Rim
,
Y. S.
,
Epps
,
F.
, and
Yeo
,
W.-H.
,
2020
, “
Fully Integrated, Stretchable, Wireless Skin-Conformal Bioelectronics for Continuous Stress Monitoring in Daily Life
,”
Adv. Sci.
,
7
(
15
), pp.
1
10
.
13.
Tang
,
H.
,
Li
,
Y.
,
Chen
,
B.
,
Chen
,
X.
,
Han
,
Y.
,
Guo
,
M.
,
Xia
,
H.-Q.
,
Song
,
R.
,
Zhang
,
X.
, and
Zhou
J.
,
2022
, “
In Situ Forming Epidermal Bioelectronics for Daily Monitoring and Comprehensive Exercise
,”
ACS Nano
,
16
(
11
), pp.
17931
17947
.
14.
Wang
,
Y.
,
Haick
,
H.
,
Guo
,
S.
,
Wang
,
C.
,
Lee
,
S.
,
Yokota
,
T.
, and
Someya
,
T.
,
2022
, “
Skin Bioelectronics Towards Long-Term, Continuous Health Monitoring
,”
Chem. Soc. Rev.
,
51
(
9
), pp.
3759
3793
.
15.
Sunwoo
,
S. H.
,
Ha
,
K. H.
,
Lee
,
S.
,
Lu
,
N.
, and
Kim
,
D. H.
,
2021
, “
Wearable and Implantable Soft Bioelectronics: Device Designs and Material Strategies
,”
Annu. Rev. Chem. Biomol. Eng.
,
12
(
1
), pp.
359
391
.
16.
Khan
,
A. N.
,
Cha
,
Y. O.
,
Giddens
,
H.
, and
Hao
,
Y.
,
2022
, “
Recent Advances in Organ Specific Wireless Bioelectronic Devices: Perspective on Biotelemetry and Power Transfer Using Antenna Systems
,”
Engineering
,
11
, pp.
27
41
.
17.
Kim
,
J.
,
Yoo
,
S.
,
Liu
,
C.
,
Kwak
,
S. S.
,
Walter
,
J. R.
,
Xu
,
S.
, and
Rogers
,
J. A.
,
2023
, “
Skin-Interfaced Wireless Biosensors for Perinatal and Paediatric Health
,”
Nat. Rev. Bioeng.
,
1
(
9
), pp.
631
647
.
18.
Koh
,
A.
,
Kang
,
D.
,
Xue
,
Y.
,
Lee
,
S.
,
Pielak
,
R. M.
,
Kim
,
J.
,
Hwang
,
T.
, et al
,
2016
, “
A Soft, Wearable Microfluidic Device for the Capture, Storage, and Colorimetric Sensing of Sweat
,”
Sci. Transl. Med.
,
8
(
366
), pp.
1
14
.
19.
Xie
,
Z.
,
Avila
,
R.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2020
, “
Flexible and Stretchable Antennas for Biointegrated Electronics
,”
Adv. Mater.
,
32
(
15
), p.
1902767
.
20.
Chung
,
H. U.
,
Kim
,
B. H.
,
Lee
,
J. Y.
,
Lee
,
J.
,
Xie
,
Z.
,
Ibler
,
E. M.
,
Lee
,
K.
, et al
,
2019
, “
Binodal, Wireless Epidermal Electronic Systems With In-Sensor Analytics for Neonatal Intensive Care
,”
Science
,
363
(
6430
), p.
eaau0780
.
21.
Meng
,
K.
,
Xiao
,
X.
,
Wei
,
W.
,
Chen
,
G.
,
Nashalian
,
A.
,
Shen
,
S.
,
Xiao
,
X.
, and
Chen
,
J.
,
2022
, “
Wearable Pressure Sensors for Pulse Wave Monitoring
,”
Adv. Mater.
,
34
(
21
), pp.
1
23
.
22.
Qiu
,
Y.
,
Tian
,
Y.
,
Sun
,
S.
,
Hu
,
J.
,
Wang
,
Y.
,
Zhang
,
Z.
,
Liu
,
A.
, et al
,
2020
, “
Bioinspired, Multifunctional Dual-Mode Pressure Sensors as Electronic Skin for Decoding Complex Loading Processes and Human Motions
,”
Nano Energy
,
78
(
September
), p.
105337
.
23.
Ghaffari
,
R.
,
Yang
,
D. S.
,
Kim
,
J.
,
Mansour
,
A.
,
Wright
,
J. A.
,
Model
,
J. B.
,
Wright
,
D. E.
,
Rogers
,
J. A.
, and
Ray
,
T. R.
,
2021
, “
State of Sweat: Emerging Wearable Systems for Real-Time, Noninvasive Sweat Sensing and Analytics
,”
ACS Sens.
,
6
(
8
), pp.
2787
2801
.
24.
Baker
,
L. B.
,
Model
,
J. B.
,
Barnes
,
K. A.
,
Anderson
,
M. L.
,
Lee
,
S. P.
,
Lee
,
K. A.
,
Brown
,
S. D.
, et al
,
2020
, “
Skin-Interfaced Microfluidic System With Personalized Sweating Rate and Sweat Chloride Analytics for Sports Science Applications
,”
Sci. Adv.
,
6
(
50
), pp.
17
19
.
25.
Rwei
,
A. Y.
,
Lu
,
W.
,
Wu
,
C.
,
Human
,
K.
,
Suen
,
E.
,
Franklin
,
D.
,
Fabiani
,
M.
, et al
,
2020
, “
A Wireless, Skin-Interfaced Biosensor for Cerebral Hemodynamic Monitoring in Pediatric Care
,”
Proc. Natl. Acad. Sci.
,
117
(
50
), pp.
31674
31684
.
26.
Ryu
,
D.
,
Kim
,
D. H.
,
Price
,
J. T.
,
Lee
,
J. Y.
,
Chung
,
H. U.
,
Allen
,
E.
,
Walter
J. R.
, et al
,
2021
, “
Comprehensive Pregnancy Monitoring With a Network of Wireless, Soft, and Flexible Sensors in High-and Low-Resource Health Settings
,”
Proc. Natl. Acad. Sci.
,
118
(
20
), pp.
1
11
.
27.
Wu
,
J.
,
Li
,
M.
,
Chen
,
W. Q.
,
Kim
,
D. H.
,
Kim
,
Y. S.
,
Huang
,
Y. G.
,
Hwang
,
K. C.
,
Kang
,
Z.
, and
Rogers
,
J. A.
,
2010
, “
A Strain-Isolation Design for Stretchable Electronics
,”
Acta. Mech. Sin. Xuebao
,
26
(
6
), pp.
881
888
.
28.
Cheng
,
H.
,
Wu
,
J.
,
Li
,
M.
,
Kim
,
D. H.
,
Kim
,
Y. S.
,
Huang
,
Y.
,
Kang
,
Z.
,
Hwang
,
K. C.
, and
Rogers
,
J. A.
,
2011
, “
An Analytical Model of Strain Isolation for Stretchable and Flexible Electronics
,”
Appl. Phys. Lett.
,
98
(
6
), pp.
98
101
.
29.
Rodeheaver
,
N.
,
Herbert
,
R.
,
Kim
,
Y. S.
,
Mahmood
,
M.
,
Kim
,
H.
,
Jeong
,
J. W.
, and
Yeo
,
W. H.
,
2021
, “
Strain-Isolating Materials and Interfacial Physics for Soft Wearable Bioelectronics and Wireless, Motion Artifact-Controlled Health Monitoring
,”
Adv. Funct. Mater.
,
31
(
36
), pp.
1
12
.
30.
Jang
,
K. I.
,
Li
,
K.
,
Chung
,
H. U.
,
Xu
,
S.
,
Jung
,
H. N.
,
Yang
,
Y.
,
Kwak
,
J. W.
, et al
,
2017
, “
Self-Assembled Three Dimensional Network Designs for Soft Electronics
,”
Nat. Commun.
,
8
(
1
), p.
15894
.
31.
Li
,
K.
,
Cheng
,
X.
,
Zhu
,
F.
,
Li
,
L.
,
Xie
,
Z.
,
Luan
,
H.
,
Wang
,
Z.
, et al
,
2019
, “
A Generic Soft Encapsulation Strategy for Stretchable Electronics
,”
Adv. Funct. Mater.
,
29
(
8
), pp.
1
12
.
32.
Hu
,
H.
,
Zhang
,
C.
,
Ding
,
Y.
,
Chen
,
F.
,
Huang
,
Q.
, and
Zheng
,
Z.
,
2023
, “
A Review of Structure Engineering of Strain-Tolerant Architectures for Stretchable Electronics
,”
Small Methods
,
7
(
11
), pp.
1
12
.
33.
Lin
,
R.
,
Li
,
Y.
,
Mao
,
X.
,
Zhou
,
W.
, and
Liu
,
R.
,
2019
, “
Hybrid 3D Printing All-in-One Heterogenous Rigidity Assemblies for Soft Electronics
,”
Adv. Mater. Technol.
,
4
(
12
), pp.
1
8
.
34.
Cai
,
M.
,
Hong
,
W.
,
Nie
,
S.
,
Wang
,
C.
, and
Song
,
J.
,
2022
, “
Stretchable Electronic Skin Patch With Strain Isolation for the Simultaneous Measurements of Surface Electromyography and Temperature
,”
Flex. Print. Electron.
,
7
(
3
), p.
035002
.
35.
Wang
,
Z.
,
Lu
,
Q.
,
Xia
,
Y.
,
Feng
,
S.
,
Shi
,
Y.
,
Wang
,
S.
,
Yang
,
X.
, et al
,
2021
, “
Stable Epidermal Electronic Device With Strain Isolation Induced by In Situ Joule Heating
,”
Microsyst. Nanoeng.
,
7
(
1
), p.
56
.
36.
Cai
,
M.
,
Nie
,
S.
,
Du
,
Y.
,
Wang
,
C.
, and
Song
,
J.
,
2019
, “
Soft Elastomers With Programmable Stiffness as Strain-Isolating Substrates for Stretchable Electronics
,”
ACS Appl. Mater. Interfaces
,
11
(
15
), pp.
14340
14346
.
37.
Ma
,
Y.
,
Pharr
,
M.
,
Wang
,
L.
,
Kim
,
J.
,
Liu
,
Y.
,
Xue
,
Y.
,
Ning
,
R.
, et al
,
2017
, “
Soft Elastomers With Ionic Liquid-Filled Cavities as Strain Isolating Substrates for Wearable Electronics
,”
Small
,
13
(
9
), p.
1602954
.
38.
Wang
,
X.
,
Ma
,
Y.
,
Xue
,
Y.
,
Luan
,
H.
,
Pharr
,
M.
,
Feng
,
X.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2017
, “
Collapse of Liquid-Overfilled Strain-Isolation Substrates in Wearable Electronics
,”
Int. J. Solids Struct.
,
117
, pp.
137
142
.
39.
Liu
,
X.
,
Qiu
,
Y.
,
Wei
,
Y.
, and
Yan
,
R.
,
2022
, “
A Novel Thermal-Mechanical Model and the Characteristics of Interfacial Stress in the Laminated Structure for Flexible Electronics
,”
J. Phys. D: Appl. Phys.
,
55
(
7
), p.
074004
.
40.
Wang
,
K. P.
,
Huang
,
Y. Y.
,
Chandra
,
A.
, and
Hu
,
K. X.
,
2000
, “
Interfacial Shear Stress, Peeling Stress, and Die Cracking Stress in Trilayer Electronic Assemblies
,”
ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Las Vegas, NV
,
May 23–26
, Vol 2, pp.
56
64
.
41.
Wu
,
X. F.
,
Jenson
,
R. A.
, and
Zhao
,
Y.
,
2014
, “
Stress-Function Variational Approach to the Interfacial Stresses and Progressive Cracking in Surface Coatings
,”
Mech. Mater.
,
69
(
1
), pp.
195
203
.
42.
Fu
,
Y.
, and
Yang
,
H.
,
2022
, “
Mechanical Analysis of Adhesion Between Wearable Electronics and Human Skin Based on Crack Theory of Bi-Material Interface
,”
Int. J. Solids Struct.
,
254–255
, p.
111850
.
43.
Kim
,
D. H.
,
Lu
,
N.
,
Ma
,
R.
,
Kim
,
Y. S.
,
Kim
,
R. H.
,
Wang
,
S.
,
Wu
,
J.
, et al
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
.
44.
Silva
,
C. A.
,
lv
,
J.
,
Yin
,
L.
,
Jeerapan
,
I.
,
Innocenzi
,
G.
,
Soto
,
F.
,
Ha
,
Y. G.
, and
Wang
,
J.
,
2020
, “
Liquid Metal Based Island-Bridge Architectures for All Printed Stretchable Electrochemical Devices
,”
Adv. Funct. Mater.
,
30
(
30
), pp.
1
10
.
45.
Yang
,
J. C.
,
Lee
,
S.
,
Ma
,
B. S.
,
Kim
,
J.
,
Song
,
M.
,
Kim
,
S. Y.
,
Kim
,
D. W.
,
Kim
,
T. S.
, and
Park
,
S.
,
2022
, “
Geometrically Engineered Rigid Island Array for Stretchable Electronics Capable of Withstanding Various Deformation Modes
,”
Sci. Adv.
,
8
(
22
), p.
eabn3863
.
46.
Li
,
R.
,
Li
,
M.
,
Su
,
Y.
,
Song
,
J.
, and
Ni
,
X.
,
2013
, “
An Analytical Mechanics Model for the Island-Bridge Structure of Stretchable Electronics
,”
Soft Matter
,
9
(
35
), pp.
8476
8482
.
47.
Wang
,
S.
,
Li
,
M.
,
Wu
,
J.
,
Kim
,
D. H.
,
Lu
,
N.
,
Su
,
Y.
,
Kang
,
Z.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
Mechanics of Epidermal Electronics
,”
ASME J. Appl. Mech. Trans.
,
79
(
3
), pp.
1
6
.
48.
Buganza Tepole
,
A.
,
Gosain
,
A. K.
, and
Kuhl
,
E.
,
2012
, “
Stretching Skin: The Physiological Limit and Beyond
,”
Int. J. Non Linear Mech.
,
47
(
8
), pp.
938
949
.
49.
Zhou
,
W.
,
Yao
,
S.
,
Wang
,
H.
,
Du
,
Q.
,
Ma
,
Y.
, and
Gas-Permeable
,
Z. Y.
,
2020
, “
Ultrathin, Stretchable Epidermal Electronics With Porous Electrodes
,”
ACS Nano
,
14
(
5
), pp.
5798
5805
.
50.
Zheng
,
Y.
,
Li
,
Y.
,
Zhao
,
Y.
,
Lin
,
X.
,
Luo
,
S.
,
Wang
,
Y.
,
Li
,
L.
, et al
,
2023
, “
Ultrathin and Highly Breathable Electronic Tattoo for Sensing Multiple Signals Imperceptibly on the Skin
,”
Nano Energy
,
107
(
2022
), p.
108092
.
51.
Zhang
,
Y.
,
Xu
,
S.
,
Fu
,
H.
,
Lee
,
J.
,
Su
,
J.
,
Hwang
,
K. C.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2013
, “
Buckling in Serpentine Microstructures and Applications in Elastomer-Supported Ultra-Stretchable Electronics With High Areal Coverage
,”
Soft Matter
,
9
(
33
), pp.
8062
8070
.
52.
Lee
,
K. H.
,
Ni
,
X.
,
Lee
,
J. Y.
,
Arafa
,
H.
,
Pe
,
D. J.
,
Xu
,
S.
,
Avila
,
R.
, et al.,
2020
, “
Mechano-Acoustic Sensing of Physiological Processes and Body Motions via a Soft Wireless Device Placed at the Suprasternal Notch
,”
Nat. Biomed. Eng.
,
4
(
2
), pp.
148
158
.
53.
Song
,
Y.
,
Min
,
J.
, and
Gao
,
W.
,
2019
, “
Wearable and Implantable Electronics: Moving Toward Precision Therapy
,”
ACS Nano
,
13
(
11
), pp.
12280
12286
.
54.
Kwak
,
J. W.
,
Han
,
M.
,
Xie
,
Z.
,
Chung
,
H. U.
,
Lee
,
J. Y.
,
Avila
,
R.
,
Yohay
,
J.
, et al
,
2020
, “
Wireless Sensors for Continuous, Multimodal Measurements at the Skin Interface With Lower Limb Prostheses
,”
Sci. Transl. Med.
,
12
(
574
), pp.
1
14
.
55.
Ziegler-Graham
,
K.
,
MacKenzie
,
E. J.
,
Ephraim
,
P. L.
,
Travison
,
T. G.
, and
Brookmeyer
,
R.
,
2008
, “
Estimating the Prevalence of Limb Loss in the United States: 2005–2050
,”
Arch. Phys. Med. Rehabil.
,
89
(
3
), pp.
422
429
.
56.
Bramley
,
J. L.
,
Worsley
,
P. R.
,
Bostan
,
L. E.
,
Bader
,
D. L.
, and
Dickinson
,
A. S.
,
2020
, “
Establishing a Measurement Array to Assess Tissue Tolerance During Loading Representative of Prosthetic use
,”
Med. Eng. Phys.
,
78
, pp.
39
47
.
57.
Song
,
H.
,
Luo
,
G.
,
Ji
,
Z.
,
Bo
,
R.
,
Xue
,
Z.
, and
Yan
,
D.
,
2022
, “
Highly-Integrated, Miniaturized, Stretchable Electronic Systems Based on Stacked Multilayer Network Materials
,”
Sci. Adv.
,
8
(
11
), p.
eabm3785
.
58.
Yoo
,
J.-Y.
,
Oh
,
S.
,
Shalish
,
W.
,
Maeng
,
W. Y.
,
Cerier
,
E.
,
Jeanne
,
E.
,
Chung
,
M. K.
, et al
,
2023
, “
Wireless Broadband Acousto-Mechanical Sensing System for Continuous Physiological Monitoring
,”
Nat. Med.
,
29
, pp.
3137
3148
.
59.
Kim
,
H.
,
Yoo
,
Y. J.
,
Yun
,
J. H.
,
Heo
,
S. Y.
,
Song
,
Y. M.
, and
Yeo
,
W. H.
,
2023
, “
Outdoor Worker Stress Monitoring Electronics With Nanofabric Radiative Cooler-Based Thermal Management
,”
Adv. Healthc. Mater.
,
12
(
28
), p.
2301104
.
60.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.
You do not currently have access to this content.