Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The nanoprecipitates and nanotwins enable to improve the mechanical performance of NiCo-based alloys. In this work, the molecular dynamics (MD) simulations are performed to investigate the strengthening mechanisms of nanotwinned medium-entropy NiCoCr alloys with various distributions and volume fractions of nanoprecipitates. MD simulations reveal that mechanical performance for the precipitates located in twin boundaries is better than that located in the twin lamellae. The precipitate-induced strengthening makes the nanotwinned NiCoCr alloys to achieve the maximum flow stress during increasing the precipitate volume fraction. The influences of volume fraction and distribution of the precipitate on winding and cutting mechanisms are analyzed comprehensively. The dislocation winding behavior, hindered twin boundaries deformation, and the adjacent precipitates connection control the precipitate strengthening mechanisms. A dislocation-based theoretical model is developed to forecast the size-dependent flow stress of nanotwinned metals with nanoprecipitates, in which the Orowan bypass mechanism and the dislocation pile-up behaviors are involved. The relationship between the microstructural size and the flow stress of nanotwinned metallic materials with nanoprecipitates is explored. The predictions for the flow stresses varied with the precipitate volume fraction are agreeable well with the results of MD simulation. The predicted maximum flow stresses and the corresponding critical volume fractions of nanoprecipitates are sensitive to the microstructural sizes.

References

1.
George
,
E. P.
,
Raabe
,
D.
, and
Ritchie
,
R. O.
,
2019
, “
High-Entropy Alloys
,”
Nat. Rev. Mater.
,
4
(
8
), pp.
515
534
.
2.
George
,
E. P.
,
Curtin
,
W. A.
, and
Tasan
,
C. C.
,
2020
, “
High Entropy Alloys: A Focused Review of Mechanical Properties and Deformation Mechanisms
,”
Acta Mater.
,
188
, pp.
435
474
.
3.
Gludovatz
,
B.
,
Hohenwarter
,
A.
,
Catoor
,
D.
,
Chang
,
E. H.
,
George
,
E. P.
, and
Ritchie
,
R. O.
,
2014
, “
A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications
,”
Science
,
345
(
6201
), pp.
1153
1158
.
4.
Diao
,
H. Y.
,
Feng
,
R.
,
Dahmen
,
K. A.
, and
Liaw
,
P. K.
,
2017
, “
Fundamental Deformation Behavior in High-Entropy Alloys: An Overview
,”
Curr. Opin. Solid State Mater. Sci.
,
21
(
5
), pp.
252
266
.
5.
Ding
,
L.
,
Hilhorst
,
A.
,
Idrissi
,
H.
, and
Jacques
,
P. J.
,
2022
, “
Potential TRIP/TWIP Coupled Effects in Equiatomic Crconi Medium-Entropy Alloy
,”
Acta Mater.
,
234
, p.
118049
.
6.
Yeh
,
J. W.
,
Chen
,
S. K.
,
Lin
,
S. J.
,
Gan
,
J. Y.
,
Chin
,
T. S.
,
Shun
,
T. T.
,
Tsau
,
C. H.
, and
Chang
,
S. Y.
,
2024
, “
Nanostructured High-Entropy Alloys With Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes
,”
Adv. Eng. Mater.
,
6
(
5
), pp.
299
303
.
7.
Meyers
,
M. A.
,
Mishra
,
A.
, and
Benson
,
D. J.
,
2006
, “
Mechanical Properties of Nanocrystalline Materials
,”
Prog. Mater. Sci.
,
51
(
4
), pp.
427
556
.
8.
Cao
,
Y.
,
Ni
,
S.
,
Liao
,
X. Z.
,
Song
,
M.
, and
Zhu
,
Y. T.
,
2018
, “
Structural Evolutions of Metallic Materials Processed by Severe Plastic Deformation
,”
Mater. Sci. Eng. R: Rep.
,
133
, pp.
1
59
.
9.
Zhu
,
L. L.
,
Qu
,
S. X.
,
Guo
,
X.
, and
Lu
,
J.
,
2015
, “
Analysis of the Twin Spacing and Grain Size Effects on Mechanical Properties in Hierarchically Nanotwinned Face-Centered Cubic Metals Based on a Mechanism-Based Plasticity Model
,”
J. Mech. Phys. Solids
,
76
, pp.
162
179
.
10.
Sun
,
L. G.
,
He
,
X. Q.
, and
Lu
,
J.
,
2018
, “
Nanotwinned and Hierarchical Nanotwinned Metals: A Review of Experimental, Computational and Theoretical Efforts
,”
NPJ Comput. Mater.
,
4
(
1
), p.
6
.
11.
Chen
,
A. Y.
,
Zhu
,
L. L.
,
Sun
,
L. G.
,
Liu
,
J. B.
,
Wang
,
H. T.
,
Wang
,
X. Y.
,
Yang
,
J. H.
, and
Lu
,
J.
,
2019
, “
Scale Law of Complex Deformation Transitions of Nanotwins in Stainless Steel
,”
Nat. Commun.
,
10
(
1
), p.
1403
.
12.
Chen
,
W. F.
,
Zhou
,
H. F.
, and
Yang
,
W.
,
2021
, “
Physically Based Modeling of Cyclic Plasticity for Highly Oriented Nanotwinned Metals
,”
ASME J. Appl. Mech.
,
88
(
4
), p.
041011
.
13.
Ming
,
K.
,
Bi
,
X.
, and
Wang
,
J.
,
2018
, “
Realizing Strength-Ductility Combination of Coarse-Grained Al0.2Co1.5CrFeNi1.5Ti0.3 Alloy Via Nano-Sized, Coherent Precipitates
,”
Int. J. Plasticity
,
100
, pp.
177
191
.
14.
Hayrettin
,
C.
,
Karakoc
,
O.
,
Karaman
,
I.
,
Mabe
,
J. H.
,
Santamarta
,
R.
, and
Pons
,
J.
,
2019
, “
Two Way Shape Memory Effect in NiTiHf High Temperature Shape Memory Alloy Tubes
,”
Acta Mater.
,
163
, pp.
1
13
.
15.
Liu
,
L.
,
Zhang
,
Y.
,
Li
,
J.
,
Fan
,
M.
,
Wang
,
X.
,
Wu
,
G.
,
Yang
,
Z.
, et al
,
2022
, “
Enhanced Strength-Ductility Synergy Via Novel Bifunctional Nano-precipitates in a High-Entropy Alloy
,”
Int. J. Plasticity
,
153
, p.
103235
.
16.
Yang
,
Z.
, and
Wang
,
J. L.
,
2023
, “
Deposition Temperature Induced Texture and Strengthening of Ti/Ni Multilayer Thin Films
,”
ASME J. Appl. Mech.
,
90
(
12
), p.
121005
.
17.
Gao
,
J. H.
,
Jiang
,
S. H.
,
Zhao
,
H. T.
,
Huang
,
Y. H.
,
Zhang
,
H. R.
,
Wang
,
S. Z.
,
Wu
,
G. L.
, et al
,
2023
, “
Enhancing Strength and Ductility in a Near Medium Mn Austenitic Steel Via Multiple Deformation Mechanisms Through Nano-precipitate
,”
Acta Mater.
,
243
, p.
118538
.
18.
Du
,
X. H.
,
Li
,
W. P.
,
Chang
,
H. T.
,
Yang
,
T.
,
Duan
,
G. S.
,
Wu
,
B. L.
,
Huang
,
J. C.
, et al
,
2020
, “
Dual Heterogeneous Structures Lead to Ultrahigh Strength and Uniform Ductility in A Co-Cr-Ni Medium-Entropy Alloy
,”
Nat. Commun.
,
11
(
1
), p.
2390
.
19.
Yang
,
T.
,
Zhao
,
Y. L.
,
Fan
,
L.
,
Wei
,
J.
,
Luan
,
J.
,
Liu
,
W. H.
,
Wang
,
C.
,
Jiao
,
Z. B.
,
Kai
,
J. J.
, and
Liu
,
C. T.
,
2020
, “
Control of Nanoscale Precipitate and Elimination of Intermediate-Temperature Embrittlement in Multicomponent High-Entropy Alloys
,”
Acta Mater.
,
189
, pp.
47
59
.
20.
Wu
,
S. W.
,
Yang
,
T.
,
Cao
,
B. X.
,
Luan
,
J. H.
,
Jia
,
Y. F.
,
Xu
,
L.
,
Mu
,
Y. K.
, et al
,
2021
, “
Multicomponent Ni-Rich High-Entropy Alloy Toughened With Irregular-Shaped Precipitates and Serrated Grain Boundaries
,”
Scr. Mater.
,
204
, p.
114066
.
21.
Zhang
,
J.
,
Ma
,
S.
,
Xiong
,
Y.
,
Xu
,
B.
, and
Zhao
,
S.
,
2021
, “
Elemental Partitions and Deformation Mechanisms of L12-Type Multicomponent Intermetallics
,”
Acta Mater.
,
219
, p.
117238
.
22.
Li
,
X. Y.
,
Wei
,
Y. J.
,
Lu
,
L.
,
Lu
,
K.
, and
Gao
,
H. J.
,
2010
, “
Dislocation Nucleation Governed Softening and Maximum Strength in Nano-twinned Metals
,”
Nature
,
464
(
7290
), pp.
877
880
.
23.
Zhu
,
L.
,
Ruan
,
H.
,
Li
,
X.
,
Dao
,
M.
,
Gao
,
H.
, and
Lu
,
J.
,
2011
, “
Modeling Grain Size Dependent Optimal Twin Spacing for Achieving Ultimate High Strength and Related High Ductility in Nanotwinned Metals
,”
Acta Mater.
,
59
(
14
), pp.
5544
5557
.
24.
Sun
,
L.
,
He
,
X.
,
Zhu
,
L.
, and
Lu
,
J.
,
2014
, “
Two Softening Stages in Nanotwinned Cu
,”
Philos. Mag.
,
94
(
35
), pp.
4037
4052
.
25.
Zhou
,
X. L.
,
Li
,
X. Y.
, and
Chen
,
C. Q.
,
2015
, “
Atomistic Mechanisms of Fatigue in Nanotwinned Metals
,”
Acta Mater.
,
99
, pp.
77
86
.
26.
Wang
,
P.
, and
Wang
,
H. T.
,
2017
, “
Meta-atom Molecular Dynamics for Studying Material Property Dependent Deformation Mechanisms of Alloys
,”
ASME J. Appl. Mech.
,
84
(
11
), p.
111002
.
27.
Fan
,
H.
,
Zhu
,
Y.
,
El-Awady
,
J. A.
, and
Raabe
,
D.
,
2018
, “
Precipitate Hardening Effects on Extension Twinning in Magnesium Alloys
,”
Int. J. Plasticity
,
106
, pp.
186
202
.
28.
Sun
,
L.
,
Li
,
D.
,
Zhu
,
L.
,
Ruan
,
H.
, and
Lu
,
J.
,
2020
, “
Size-Dependent Formation and Thermal Stability of High-Order Twins in Hierarchical Nanotwinned Metals
,”
Int. J. Plasticity
,
128
, p.
102685
.
29.
Borovikov
,
V. V.
,
Mendelev
,
M. I.
,
Smith
,
T. M.
, and
Lawson
,
J. W.
,
2023
, “
Molecular Dynamics Simulation of Twin Nucleation and Growth in Ni-Based Superalloys
,”
Int. J. Plasticity
,
166
, p.
103645
.
30.
Li
,
J.
,
Chen
,
H.
,
Fang
,
Q.
,
Jiang
,
C.
,
Liu
,
Y.
, and
Liaw
,
P. K.
,
2020
, “
Unraveling the Dislocation–Precipitate Interactions in High-Entropy Alloys
,”
Int. J. Plasticity
,
133
, p.
102819
.
31.
Li
,
Z.
,
Xiao
,
F.
,
Chen
,
H.
,
Hou
,
R.
,
Cai
,
X.
, and
Jin
,
X.
,
2021
, “
Atomic Scale Modeling of the Coherent Strain Field Surrounding Ni4Ti3 Precipitate and Its Effects on Thermally-Induced Martensitic Transformation in a NiTi Alloy
,”
Acta Mater.
,
211
, p.
116883
.
32.
Lin
,
Y. P.
,
Yang
,
T. F.
,
Lang
,
L.
,
Shan
,
C.
,
Deng
,
H. Q.
,
Hu
,
W. Y.
, and
Gao
,
F.
,
2020
, “
Enhanced Radiation Tolerance of the Ni-Co-Cr-Fe High-Entropy Alloy as Revealed From Primary Damage
,”
Acta Mater.
,
196
, pp.
133
143
.
33.
Bahramyan
,
M.
,
Mousavian
,
R. T.
, and
Brabazon
,
D.
,
2020
, “
Study of the Plastic Deformation Mechanism of TRIP–TWIP High Entropy Alloys at the Atomic Level
,”
Int. J. Plasticity
,
127
, p.
102649
.
34.
Zhao
,
S. Y.
, and
Osetsky
,
Y.
,
2021
, “
Structural and Chemical Disorder Enhance Point Defect Diffusion and Atomic Transport in Ni3Al-Based γ′ Phase
,”
Acta Mater.
,
207
, p.
116704
.
35.
Xie
,
Z.
,
Jian
,
W.-R.
,
Xu
,
S.
,
Beyerlein
,
I. J.
,
Zhang
,
X.
,
Yao
,
X.
, and
Zhang
,
R.
,
2022
, “
Phase Transition in Medium Entropy Alloy CoCrNi Under Quasi-isentropic Compression
,”
Int. J. Plasticity
,
157
, p.
103389
.
36.
Zhang
,
Q.
,
Huang
,
R. R.
,
Jiang
,
J. X.
,
Cao
,
T. Q.
,
Zeng
,
Y. P.
,
Li
,
J. G.
,
Xue
,
Y. F.
, and
Li
,
X. Y.
,
2022
, “
Size Effects and Plastic Deformation Mechanisms in Single-Crystalline CoCrFeNi Micro/Nanopillars
,”
J. Mech. Phys. Solids
,
162
, p.
104853
.
37.
Gupta
,
A.
,
Jian
,
W. R.
,
Xu
,
S.
,
Beyerlein
,
I. J.
, and
Tucker
,
G. J.
,
2022
, “
On the Deformation Behavior of CoCrNi Medium Entropy Alloys: Unraveling Mechanistic Competition
,”
Int. J. Plasticity
,
159
, p.
103442
.
38.
Gladman
,
T.
,
1999
, “
Precipitate Hardening in Metals
,”
Mater. Sci. Technol.
,
15
(
1
), pp.
30
36
.
39.
Chatterjee
,
A.
,
Sprague
,
E.
,
Mazumder
,
J.
, and
Misra
,
A.
,
2021
, “
Hierarchical Microstructures and Deformation Behavior of Laser Direct-Metal-Deposited Cu–Fe Alloys
,”
Mater. Sci. Eng. A
,
802
, p.
140659
.
40.
Rhee
,
M.
,
Hirth
,
J. P.
, and
Zbib
,
H. M.
,
1994
, “
A Super Dislocation Model for the Strengthening of Metal Matrix Composites and the Initiation and Propagation of Shear Bands
,”
Acta Metall. Mater.
,
42
(
9
), pp.
2645
2655
.
41.
Li
,
K.
,
Yu
,
B.
,
Misra
,
R. D. K.
,
Han
,
G.
,
Liu
,
S.
, and
Shang
,
C. J.
,
2018
, “
Strengthening of Cobalt-Free 19Ni3Mo1.5Ti Maraging Steel Through High-Density and Low Lattice Misfit Nanoscale Precipitates
,”
Mater. Sci. Eng. A
,
715
, pp.
174
185
.
42.
Peng
,
S.
,
Wei
,
Y.
, and
Gao
,
H.
,
2020
, “
Nanoscale Precipitates as Sustainable Dislocation Sources for Enhanced Ductility and High Strength
,”
Proc. Natl. Acad. Sci. USA
,
117
(
10
), pp.
5204
5209
.
43.
Alizadeh
,
R.
, and
LLorca
,
J.
,
2020
, “
Interactions Between Basal Dislocations and β1’ Precipitates in Mg-4Zn Alloy: Mechanisms and Strengthening
,”
Acta Mater.
,
186
, pp.
475
486
.
44.
Chen
,
H.
,
Chen
,
Z.
,
Ji
,
G.
,
Zhong
,
S.
,
Wang
,
H.
,
Borbély
,
A.
,
Ke
,
Y.
, and
Bréchet
,
Y.
,
2021
, “
Experimental and Modelling Assessment of Ductility in a Precipitate Hardening AlMgScZr Alloy
,”
Int. J. Plasticity
,
139
, p.
102971
.
45.
Hu
,
Y.
, and
Curtin
,
W. A.
,
2022
, “
Modeling of Precipitate Strengthening With Near-Chemical Accuracy: Case Study of Al-6xxx Alloys
,”
Acta Mater.
,
237
, p.
118144
.
46.
Xu
,
S. S.
,
Zhao
,
Y.
,
Chen
,
D.
,
Sun
,
L. W.
,
Chen
,
L.
,
Tong
,
X.
,
Liu
,
C. T.
, and
Zhang
,
Z. W.
,
2018
, “
Nanoscale Precipitate and Its Influence on Strengthening Mechanisms in an Ultra-High Strength Low-Carbon Steel
,”
Int. J. Plasticity
,
113
, pp.
99
110
.
47.
Chen
,
Y.
,
Fang
,
Q.
,
Luo
,
S.
,
Liu
,
F.
,
Liu
,
B.
,
Liu
,
Y.
,
Huang
,
Z.
,
Liaw
,
P. K.
, and
Li
,
J.
,
2022
, “
Unraveling a Novel Precipitate Enrichment Dependent Strengthening Behaviour in Nickel-Based Superalloy
,”
Int. J. Plasticity
,
155
, p.
103333
.
48.
Farkas
,
D.
, and
Caro
,
A.
,
2020
, “
Model Interatomic Potentials for Fe–Ni–Cr–Co–Al High-Entropy Alloys
,”
J. Mater. Res.
,
35
(
22
), pp.
3031
3040
.
49.
Zhang
,
D. D.
,
Wang
,
H.
,
Zhang
,
J. Y.
,
Xue
,
H.
,
Liu
,
G.
, and
Sun
,
J.
,
2021
, “
Achieving Excellent Strength-Ductility Synergy in Twinned NiCoCr Medium-Entropy Alloy Via Al/Ta Co-Doping
,”
J. Mater. Sci. Technol.
,
87
, pp.
184
195
.
50.
Honeycutt
,
J. D.
, and
Andersen
,
H. C.
,
1987
, “
Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters
,”
J. Phys. Chem.
,
91
(
19
), pp.
4950
4963
.
51.
Zhu
,
Y. T.
,
Liao
,
X. Z.
, and
Valiev
,
R. Z.
,
2005
, “
Formation Mechanism of Fivefold Deformation Twins in Nanocrystalline Face-Centered-Cubic Metals
,”
Appl. Phys. Lett.
,
86
(
10
), p.
103112
.
52.
Barrett
,
C. D.
,
Tschopp
,
M. A.
, and
El Kadiri
,
H.
,
2012
, “
Automated Analysis of Twins in Hexagonal Close-Packed Metals Using Molecular Dynamics
,”
Scripta Mater.
,
66
(
9
), pp.
666
669
.
53.
Latypov
,
F. T.
,
Fomin
,
E. V.
,
Krasnikov
,
V. S.
, and
Mayer
,
A. E.
,
2022
, “
Dynamic Compaction of Aluminum With Nanopores of Varied Shape: MD Simulations and Machine Learning-Based Approximation of Deformation Behavior
,”
Int. J. Plasticity
,
156
, p.
103363
.
54.
Kondo
,
H.
,
Wakeda
,
M.
, and
Watanabe
,
I.
,
2018
, “
Atomic Study on the Interaction Between Superlattice Screw Dislocation and γ-Ni Precipitate in γ'-Ni3Al Intermetallics
,”
Intermetallics
,
102
, pp.
1
5
.
55.
Huang
,
Y.
,
Qu
,
S.
,
Hwang
,
K. C.
,
Li
,
M.
, and
Gao
,
H.
,
2004
, “
A Conventional Theory of Mechanism-Based Strain Gradient Plasticity
,”
Int. J. Plasticity
,
20
(
4–5
), pp.
753
782
.
56.
Zhang
,
B. B.
,
Yan
,
F. K.
,
Zhao
,
M. J.
,
Tao
,
N. R.
, and
Lu
,
K.
,
2018
, “
Combined Strengthening From Nanotwins and Nano-precipitates in an Iron-Based Superalloy
,”
Acta Mater.
,
151
, pp.
310
320
.
57.
Mori
,
T.
, and
Mura
,
T.
,
1987
, “
Blocking Effect of Inclusions on Grain Boundary Sliding: Spherical Grain Approximation
,”
J. Mech. Phys. Solids
,
35
(
5
), pp.
631
641
.
58.
Zhu
,
L.
,
Guo
,
X.
,
Ruan
,
H.
, and
Lu
,
J.
,
2016
, “
Prediction of Mechanical Properties in Bimodal Nanotwinned Metals With a Composite Structure
,”
Compos. Sci. Technol.
,
123
, pp.
222
231
.
59.
Tang
,
Y.
,
Liu
,
C.
,
Liu
,
J.
,
Zhang
,
C.
,
Chen
,
H.
,
Shi
,
Q.
,
Dan
,
C.
,
Wang
,
H.
, and
Chen
,
Z.
,
2023
, “
Improving the Ductility of Al Matrix Composites Through Bimodal Structures: Precise Manipulation and Mechanical Responses to Coarse Grain Fraction
,”
Mater. Sci. Eng. A
,
875
, p.
145139
.
60.
Zhang
,
Y.
,
Li
,
M.
,
Jiang
,
K.
,
Wang
,
H.
,
Qu
,
P.
,
Wang
,
H.
, and
Zhu
,
L.
,
2023
, “
Constitutive Behavior of Titanium Alloy With Dual-Phase Microstructures: Experiments and Modeling
,”
ASME J. Appl. Mech.
,
90
(
7
), p.
071009
.
61.
Gan
,
B.
,
Wheeler
,
J. M.
,
Bi
,
Z.
,
Liu
,
L.
,
Zhang
,
J.
, and
Fu
,
H.
,
2019
, “
Superb Cryogenic Strength of Equiatomic CrCoNi Derived From Gradient Hierarchical Microstructure
,”
J. Mater. Sci. Technol.
,
35
(
6
), pp.
957
961
.
62.
Yuan
,
S.
,
Gan
,
B.
,
Qian
,
L.
,
Wu
,
B.
,
Fu
,
H.
,
Wu
,
H.
,
Cheung
,
C. F.
, and
Yang
,
X.
,
2021
, “
Gradient Nanotwinned CrCoNi Medium-Entropy Alloy With Strength-Ductility Synergy
,”
Scr. Mater.
,
203
, p.
114117
.
63.
Zhang
,
Y.
,
Fan
,
J.
,
Gan
,
B.
,
Guo
,
X.
,
Ruan
,
H.
, and
Zhu
,
L.
,
2022
, “
Constitutive Modeling of Mechanical Behaviors in Gradient Nanostructured Alloys With Hierarchical Dual-Phased Microstructures
,”
Acta Mech.
,
233
(
8
), pp.
3197
3212
.
64.
Kim
,
H. S.
,
Estrin
,
Y.
, and
Bush
,
M. B.
,
2000
, “
Plastic Deformation Behaviour of Fine-Grained Materials
,”
Acta Mater.
,
48
(
2
), pp.
493
504
.
65.
Kinderlehrer
,
D.
, and
Mason
,
D. E.
,
1999
, “
Incoherence at Heterogeneous Interfaces
,”
J. Mech. Phys. Solids
,
47
(
8
), pp.
1609
1632
.
66.
Dao
,
M.
,
Lu
,
L.
,
Asaro
,
R. J.
,
De Hosson
,
J. T. M.
, and
Ma
,
E.
,
2007
, “
Toward a Quantitative Understanding of Mechanical Behavior of Nanocrystalline Metals
,”
Acta Mater.
,
55
(
12
), pp.
4041
4065
.
67.
Wu
,
G.
,
Chan
,
K.
,
Zhu
,
L.
,
Sun
,
L.
, and
Lu
,
J.
,
2017
, “
Dual-Phase Nanostructuring as a Route to High-Strength Magnesium Alloys
,”
Nature
,
545
(
765
), pp.
80
83
.
68.
Sun
,
L. G.
,
Wu
,
G.
,
Wang
,
Q.
, and
Lu
,
J.
,
2020
, “
Nanostructural Metallic Materials: Structures and Mechanical Properties
,”
Mater. Today
,
38
, pp.
114
135
.
69.
Barrios
,
A.
,
Nathaniel
,
J. E.
,
Monti
,
J.
,
Milne
,
Z.
,
Adams
,
D. P.
,
Hattar
,
K.
,
Medlin
,
D. L.
,
Dingreville
,
R.
, and
Boyce
,
B. L.
,
2023
, “
Gradient Nanostructuring Via Compositional Means
,”
Acta Mater.
,
247
, p.
118733
.
You do not currently have access to this content.