Abstract

A unified approach to determine the effective elastic properties of irregular and regular honeycomb (Hc) lattice structures is presented. A micromechanics model of a lattice, based on the fundamental periodic element, is developed using Castigliano’s second theorem to obtain a homogenized strain energy density function that yields all elastic properties of the lattice. The lattice geometry, comprising uniform slender beam elements, is specified by six lattice parameters for irregular lattices and four lattice parameters for regular lattices. These parameters generate Hc or re-entrant honeycomb (RHc) structures with different symmetry properties, which can cater to different design requirements. A comprehensive validation, including comparison with available analytical and full finite element (FE) results for different geometries and dimensions, confirms the accuracy of the proposed approach. The influence of the geometric parameters on the effective lattice properties is clearly revealed, which leads to some novel design insights. The existence of the continuous and accidental L4 symmetry axis in tuned Hc and RHc lattices (including irregular ones) is brought out for the first time in this analysis. Interestingly, it is observed that high auxeticity coincides with low shear modulus, contrary to the existing postulate of high auxeticity that implies high shear stiffness. It is also shown that auxeticity is a directional property in RHc lattice structures.

References

1.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson’s Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.
2.
Kolken
,
H. M. A.
, and
Zadpoor
,
A. A.
,
2017
, “
Auxetic Mechanical Metamaterials
,”
RSC Adv.
,
7
(
9
), pp.
5111
5129
.
3.
Ren
,
X.
,
Das
,
R.
,
Tran
,
P.
,
Ngo
,
T. D.
, and
Xie
,
Y. M.
,
2018
, “
Auxetic Metamaterials and Structures: A Review
,”
Smart Mater. Struct.
,
27
(
2
), p.
023001
.
4.
Surjadi
,
J. U.
,
Gao
,
L.
,
Du
,
H.
,
Li
,
X.
,
Xiong
,
X.
,
Fang
,
N. X.
, and
Lu
,
Y.
,
2019
, “
Mechanical Metamaterials and Their Engineering Applications
,”
Adv. Eng. Mater.
,
21
(
3
), p.
1800864
.
5.
Wu
,
W.
,
Hu
,
W.
,
Qian
,
G.
,
Liao
,
H.
,
Xu
,
X.
, and
Berto
,
F.
,
2019
, “
Mechanical Design and Multifunctional Applications of Chiral Mechanical Metamaterials: A Review
,”
Mater. Des.
,
180
, p.
107950
.
6.
Madhu Balan
,
P.
,
Mertens
,
A. J.
, and
Raju Bahubalendruni
,
M. V. A.
,
2023
, “
Auxetic Mechanical Metamaterials and Their Futuristic Developments: A State-of-Art Review
,”
Mater. Today Commun.
,
34
, p.
105285
.
7.
Prawoto
,
Y.
,
2012
, “
Seeing Auxetic Materials From the Mechanics Point of View: A Structural Review on the Negative Poisson’s Ratio
,”
Comput. Mater. Sci.
,
58
, pp.
140
153
.
8.
Usta
,
F.
,
Türkmen
,
H. S.
, and
Scarpa
,
F.
,
2021
, “
Low-Velocity Impact Resistance of Composite Sandwich Panels With Various Types of Auxetic and Non-auxetic Core Structures
,”
Thin-Walled Struct.
,
163
, p.
107738
.
9.
Najafi
,
M.
,
Ahmadi
,
H.
, and
Liaghat
,
G.
,
2021
, “
Experimental Investigation on Energy Absorption of Auxetic Structures
,”
Mater. Today: Proc.
,
34
, pp.
350
355
.
10.
Chen
,
Y.
,
Li
,
T.
,
Scarpa
,
F.
, and
Wang
,
L.
,
2017
, “
Lattice Metamaterials With Mechanically Tunable Poisson’s Ratio for Vibration Control
,”
Phys. Rev. Appl.
,
7
(
2
), p.
024012
.
11.
Wang
,
C. Y.
,
Wang
,
W. W.
,
Zhao
,
W. Z.
,
Wang
,
Y.
, and
Zhou
,
G.
,
2018
, “
Structure Design and Multi-objective Optimization of a Novel NPR Bumper System
,”
Compos. Part B: Eng.
,
153
, pp.
78
96
.
12.
Wang
,
Y.
,
Wang
,
L.
,
dong Ma
,
Z.
, and
Wang
,
T.
,
2016
, “
A Negative Poisson’s Ratio Suspension Jounce Bumper
,”
Mater. Des.
,
103
, pp.
90
99
.
13.
Zheng
,
Z.
,
Rakheja
,
S.
, and
Sedaghati
,
R.
,
2023
, “
Modal Properties of Honeycomb Wheels: A Parametric Analysis Using Response Surface Method
,”
Eur. J. Mech. A Solids
,
97
, p.
104842
.
14.
Lakes
,
R. S.
, and
Elms
,
K.
,
1993
, “
Indentability of Conventional and Negative Poisson’s Ratio Foams
,”
J. Compos. Mater.
,
27
(
12
), pp.
1193
1202
.
15.
Alderson
,
A.
,
Rasburn
,
J.
,
Ameer-Beg
,
S.
,
Mullarkey
,
P. G.
,
Perrie
,
W.
, and
Evans
,
K. E.
,
2000
, “
An Auxetic Filter: A Tuneable Filter Displaying Enhanced Size Selectivity Or Defouling Properties
,”
Ind. Eng. Chem. Res.
,
39
(
3
), pp.
654
665
.
16.
Evans
,
K. E.
, and
Alderson
,
A.
,
2000
, “
Auxetic Materials: Functional Materials and Structures From Lateral Thinking!
Adv. Mater.
,
12
(
9
), pp.
617
628
.
17.
Carneiro
,
V. H.
,
Meireles
,
J.
, and
Puga
,
H.
,
2013
, “
Auxetic Materials—A Review
,”
Mater. Sci. Pol.
,
31
(
4
), pp.
561
571
.
18.
Li
,
T.
,
Liu
,
F.
, and
Wang
,
L.
,
2020
, “
Enhancing Indentation and Impact Resistance in Auxetic Composite Materials
,”
Compos. Part B: Eng.
,
198
, p.
108229
.
19.
Kolken
,
H. M. A.
,
Janbaz
,
S.
,
Leeflang
,
S. M. A.
,
Lietaert
,
K.
,
Weinans
,
H. H.
, and
Zadpoor
,
A. A.
,
2018
, “
Rationally Designed Meta-implants: A Combination of Auxetic and Conventional Meta-biomaterials
,”
Mater. Horiz.
,
5
(
1
), pp.
28
35
.
20.
Shirzad
,
M.
,
Zolfagharian
,
A.
,
Bodaghi
,
M.
, and
Nam
,
S. Y.
,
2023
, “
Auxetic Metamaterials for Bone-Implanted Medical Devices: Recent Advances and New Perspectives
,”
Eur. J. Mech. A Solids
,
98
, p.
104905
.
21.
Chen
,
H.
,
Zhu
,
F.
,
Jang
,
K.-I.
,
Feng
,
X.
,
Rogers
,
J. A.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Ma
,
Y.
,
2018
, “
The Equivalent Medium of Cellular Substrate Under Large Stretching, With Applications to Stretchable Electronics
,”
J. Mech. Phys. Solids
,
120
, pp.
199
207
(Special Issue in Honor of Ares J. Rosakis on the Occasion of His 60th Birthday).
22.
Yan
,
Z. G.
,
Wang
,
B. L.
,
Wang
,
K. F.
, and
Zhang
,
C.
,
2019
, “
A Novel Cellular Substrate for Flexible Electronics With Negative Poisson Ratios Under Large Stretching
,”
Int. J. Mech. Sci.
,
151
, pp.
314
321
.
23.
Zhang
,
Z.
,
Liu
,
S.
,
Wu
,
M.
, and
Liu
,
S.
,
2023
, “
Shape-Adaptable and Wearable Strain Sensor Based on Braided Auxetic Yarns for Monitoring Large Human Motions
,”
Appl. Mater. Today
,
35
, p.
101996
.
24.
Jiang
,
Y.
,
Liu
,
Z.
,
Matsuhisa
,
N.
,
Qi
,
D.
,
Leow
,
W. R.
,
Yang
,
H.
,
Yu
,
J.
, et al.,
2018
, “
Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors
,”
Adv. Mater.
,
30
(
12
), p.
1706589
.
25.
Ahmed
,
M. F.
,
Li
,
Y.
, and
Zeng
,
C.
,
2019
, “
Stretchable and Compressible Piezoresistive Sensors From Auxetic Foam and Silver Nanowire
,”
Mater. Chem. Phys.
,
229
, pp.
167
173
.
26.
Malfa
,
F. L.
,
Puce
,
S.
,
Rizzi
,
F.
, and
De Vittorio
,
M.
,
2020
, “
A Flexible Carbon Nanotubes-Based Auxetic Sponge Electrode for Strain Sensors
,”
Nanomaterials
,
10
(
12
).
27.
Oh
,
J.-H.
,
Kim
,
J.-S.
,
Nguyen
,
V. H.
, and
Oh
,
I.-K.
,
2020
, “
Auxetic Graphene Oxide-Porous Foam for Acoustic Wave and Shock Energy Dissipation
,”
Compos. Part B: Eng.
,
186
, p.
107817
.
28.
Hosseinkhani
,
A.
,
Younesian
,
D.
,
Ranjbar
,
M.
, and
Scarpa
,
F.
,
2021
, “
Enhancement of the Vibro-acoustic Performance of Anti-tetra-chiral Auxetic Sandwich Panels Using Topologically Optimized Local Resonators
,”
Appl. Acoust.
,
177
, p.
107930
.
29.
Eghbali
,
P.
,
Younesian
,
D.
, and
Farhangdoust
,
S.
,
2020
, “
Enhancement of the Low-Frequency Acoustic Energy Harvesting With Auxetic Resonators
,”
Appl. Energy
,
270
, p.
115217
.
30.
Latourte
,
F.
,
Wei
,
X.
,
Feinberg
,
Z. D.
,
de Vaucorbeil
,
A.
,
Tran
,
P.
,
Olson
,
G. B.
, and
Espinosa
,
H. D.
,
2012
, “
Design and Identification of High Performance Steel Alloys for Structures Subjected to Underwater Impulsive Loading
,”
Int. J. Solids Struct.
,
49
(
13
), pp.
1573
1587
.
31.
Wei
,
X.
,
Tran
,
P.
,
de Vaucorbeil
,
A.
,
Ramaswamy
,
R. B.
,
Latourte
,
F.
, and
Espinosa
,
H. D.
,
2013
, “
Three-Dimensional Numerical Modeling of Composite Panels Subjected to Underwater Blast
,”
J. Mech. Phys. Solids
,
61
(
6
), pp.
1319
1336
.
32.
Wei
,
X.
,
de Vaucorbeil
,
A.
,
Tran
,
P.
, and
Espinosa
,
H. D.
,
2013
, “
A New Rate-Dependent Unidirectional Composite Model—Application to Panels Subjected to Underwater Blast
,”
J. Mech. Phys. Solids
,
61
(
6
), pp.
1305
1318
.
33.
Lisiecki
,
J.
,
Błażejewicz
,
T.
,
Kłysz
,
S.
,
Gmurczyk
,
G.
,
Reymer
,
P.
, and
Mikułowski
,
G.
,
2013
, “
Tests of Polyurethane Foams With Negative Poisson’s Ratio
,”
Phys. Status Solidi (b)
,
250
(
10
), pp.
1988
1995
.
34.
Wang
,
Y.-C.
, and
Lakes
,
R.
,
2002
, “
Analytical Parametric Analysis of the Contact Problem of Human Buttocks and Negative Poisson’s Ratio Foam Cushions
,”
Int. J. Solids Struct.
,
39
(
18
), pp.
4825
4838
.
35.
Scarpa
,
F.
,
Giacomin
,
J.
,
Zhang
,
Y.
, and
Pastorino
,
P.
,
2005
, “
Mechanical Performance of Auxetic Polyurethane Foam for Antivibration Glove Applications
,”
Cell. Polym.
,
24
(
5
), pp.
253
268
.
36.
Sanami
,
M.
,
Ravirala
,
N.
,
Alderson
,
K.
, and
Alderson
,
A.
,
2014
, “
Auxetic Materials for Sports Applications
,”
Procedia Eng.
,
72
, pp.
453
458
(The Engineering of Sport 10).
37.
Foster
,
L.
,
Peketi
,
P.
,
Allen
,
T.
,
Senior
,
T.
,
Duncan
,
O.
, and
Alderson
,
A.
,
2018
, “
Application of Auxetic Foam in Sports Helmets
,”
Appl. Sci.
,
8
(
3
).
38.
Allen
,
T.
,
Duncan
,
O.
,
Foster
,
L.
,
Senior
,
T.
,
Zampieri
,
D.
,
Edeh
,
V.
, and
Alderson
,
A.
,
2017
, “Auxetic Foam for Snow-Sport Safety Devices,”
Snow Sports Trauma and Safety
,
I. S.
Scher
,
R. M.
Greenwald
, and
N.
Petrone
, eds.,
Springer International Publishing
,
Cham
, pp.
145
159
.
39.
Gibson
,
L. J.
,
Ashby
,
M. F.
,
Schajer
,
G. S.
, and
Robertson
,
C. I.
,
1982
, “
The Mechanics of Two-Dimensional Cellular Materials
,”
Proc. R. Soc. Lond. A Math. Phys. Sci.
,
382
(
1782
), pp.
25
42
.
40.
Kolpakov
,
A. G.
,
1985
, “
Determination of the Average Characteristics of Elastic Frameworks
,”
J. Appl. Math. Mech.
,
49
(
6
), pp.
739
745
.
41.
Bakhvalov
,
N.
, and
Panasenko
,
G.
,
1984
,
Averaging of Processes in Periodic Media. Mathematical Problems of the Mechanics of Composites
,
Nauka
,
Moscow
.
42.
Hashin
,
Z.
, and
Rosen
,
B. W.
,
1964
, “
The Elastic Moduli of Fiber-Reinforced Materials
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
223
232
.
43.
Theocaris
,
P. S.
,
Spathis
,
G.
, and
Sideridis
,
E.
,
1982
, “
Elastic and Viscoelastic Properties of Fibre-Reinforced Composite Materials
,”
Fibre Sci. Technol.
,
17
(
3
), pp.
169
181
.
44.
Gonella
,
S.
, and
Ruzzene
,
M.
,
2008
, “
Homogenization and Equivalent In-Plane Properties of Two-Dimensional Periodic Lattices
,”
Int. J. Solids Struct.
,
45
(
10
), pp.
2897
2915
.
45.
Masters
,
I. G.
, and
Evans
,
K. E.
,
1996
, “
Models for the Elastic Deformation of Honeycombs
,”
Compos. Struct.
,
35
(
4
), pp.
403
422
.
46.
Evans
,
K. E.
,
Nkansah
,
M. A.
, and
Hutchinson
,
I. J.
,
1994
, “
Auxetic Foams: Modelling Negative Poisson’s Ratios
,”
Acta Metall. Mater.
,
42
(
4
), pp.
1289
1294
.
47.
Lee
,
J.
,
Choi
,
J. B.
, and
Choi
,
K.
,
1996
, “
Application of Homogenization FEM Analysis to Regular and Re-entrant Honeycomb Structures
,”
J. Mater. Sci.
,
31
(
15
), pp.
4105
4110
.
48.
Wan
,
H.
,
Ohtaki
,
H.
,
Kotosaka
,
S.
, and
Hu
,
G.
,
2004
, “
A Study of Negative Poisson’s Ratios in Auxetic Honeycombs Based on a Large Deflection Model
,”
Eur. J. Mech. A Solids
,
23
(
1
), pp.
95
106
.
49.
Grima
,
J. N.
,
Attard
,
D.
,
Ellul
,
B.
, and
Gatt
,
R.
,
2011
, “
An Improved Analytical Model for the Elastic Constants of Auxetic and Conventional Hexagonal Honeycombs
,”
Cell. Polym.
,
30
(
6
), pp.
287
310
.
50.
Chen
,
D. H.
, and
Yang
,
L.
,
2011
, “
Analysis of Equivalent Elastic Modulus of Asymmetrical Honeycomb
,”
Compos. Struct.
,
93
(
2
), pp.
767
773
.
51.
Awasthi
,
M.
,
Naskar
,
S.
,
Singh
,
A.
, and
Mukhopadhyay
,
T.
,
2024
, “
Constitutive Behavior of Asymmetric Multi-material Honeycombs With Bi-level Variably-Thickened Composite Architecture
,”
Thin-Walled Struct.
,
203
, p.
112183
.
52.
Larsen
,
U. D.
,
Signund
,
O.
, and
Bouwsta
,
S.
,
1997
, “
Design and Fabrication of Compliant Micromechanisms and Structures With Negative Poisson’s Ratio
,”
J. Microelectromech. Syst.
,
6
(
2
), pp.
99
106
.
53.
Theocaris
,
P. S.
,
Stavroulakis
,
G. E.
, and
Panagiotopoulos
,
P. D.
,
1997
, “
Negative Poisson’s Ratios in Composites With Star-Shaped Inclusions: A Numerical Homogenization Approach
,”
Arch. Appl. Mech.
,
67
(
4
), pp.
274
286
.
54.
Wei
,
L.
,
Zhao
,
X.
,
Yu
,
Q.
, and
Zhu
,
G.
,
2020
, “
A Novel Star Auxetic Honeycomb With Enhanced In-Plane Crushing Strength
,”
Thin-Walled Struct.
,
149
, p.
106623
.
55.
Huang
,
J.
,
Zhang
,
Q.
,
Scarpa
,
F.
,
Liu
,
Y.
, and
Leng
,
J.
,
2017
, “
In-Plane Elasticity of a Novel Auxetic Honeycomb Design
,”
Compos. Part B: Eng.
,
110
, pp.
72
82
.
56.
Berinskii
,
I. E.
,
2018
, “
In-Plane Elastic Properties of Auxetic Multilattices
,”
Smart Mater. Struct.
,
27
(
7
), p.
075012
.
57.
Montgomery-Liljeroth
,
E.
,
Schievano
,
S.
, and
Burriesci
,
G.
,
2023
, “
Elastic Properties of 2d Auxetic Honeycomb Structures—A Review
,”
Appl. Mater. Today
,
30
, p.
101722
.
58.
Daniel
,
I. M.
, and
Ishai
,
O.
,
2006
,
Engineering Mechanics of Composite Materials
,
Oxford University Press
,
Oxford, UK
.
59.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.