Abstract

This article deals with a survey of the Newtonian fluid dynamics equations with some historical notes and a discussion related to the solvability of fluid flows problems. On the way, we discuss briefly various questions related with the behavior of fluid flows governed by these fluid dynamics equations. Some of these questions are, in fact, closely connected with the well-posedness of fluid dynamics problems. We touch on the problem of the fluid dynamics limit of the Boltzmann equation of the kinetic theory of gases. An overview of some rigorous recent results on the existence and uniqueness of solutions of the fluid flows problems concludes this paper. At the end, after some concluding remarks, there are 306 references.

References

1.
Bernoulli J (1737), Hydraulics.
2.
Bernoulli D (1738), Hydrodynamica, Argentorati.
3.
D’Alembert J (Le Rond) (1744), Traité de l’équilibre et du mouvement des fluids.
4.
Euler L (1755), Principes généraux du mouvement des fluides, Hist Acad Berlin, 274–315.
5.
Navier
CL MH
(
1821
),
Sur les lois des mouvements des fluides, en ayant égard aà l’adhésion des molecules
,
Ann. Chim. (Paris)
19
,
244
260
.
6.
Poisson
SD
(
1831
),
Mémoire sur les équations générales de l’équilibre et du mouvement des corps solides élastiques et des fluides
,
J. Ec. Polytech. (Paris)
13
, cahier 20,
1
174
.
7.
Cauchy A (1828), Ex. de Math. 3, See Oeuvres 8, 195–226, 227–252, 253–277.
8.
Stokes
GG
(
1845
),
On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids
,
Trans. Cambridge Philos. Soc.
viii
,
287
319
.
9.
Saint-Venant
AJB de
(
1843
),
CR Acad Sci, Paris
17
,
1240
1243
.
10.
Newton I (1687), Philosophiae Naturalis Principia Mathematica, London.
11.
Gibbs
JW
(
1875
),
On the equilibrium of heterogeneous substances
,
Trans. Conn. Acad. Arts Sci.
3
,
108
248
, 343–524.
12.
Neumann
C
(
1894
),
Ueber die Bewegung der Wärme in compressiblen oder auch incompressiblen Flüssigleiten
,
Ber Verh Ges Wiss
46
,
1
24
.
13.
Fourier
J
(
1833
),
Mémoire d’analyze sur le mouvement de la chaleur dans les fluides
,
Mémoires de l’Acad. Royale des Sci. de l’Inst. de France
,
12
,
507
520
. See (1890) (with editorial changes), 595–616 of Oeuvres de Fourier, Tome 2.
14.
Goldstein
S
(
1969
),
Fluid mechanics in the first half of this century
Annu. Rev. Fluid Mech.
1
,
1
28
.
15.
Birkhoff
G
, (
1983
),
Numerical fluid dynamics
,
SIAM Rev.
25
,
1
34
.
16.
Cercignani C, Illner R, Pulvirenti M (1994), The Mathematical Theory of Dilute Gases, AMS 106, Springer-Verlag, New York.
17.
Bellomo
N
,
Le Tallec
P
, and
Perthame
B
(
1995
),
Nonlinear Boltzmann equation solutions and applications to fluid dynamics
,
Appl. Mech. Rev.
48
(
12
),
777
794
.
18.
Marchioro C and Pulvirenti M (1994), Mathematical Theory of Incompressible Nonviscous Fluids, AMS 96, Springer-Verlag, New York.
19.
Chemin JY (1995), Fluides parfaits incompressibles, Asterisque 230, Paris.
20.
Lions P-L (1996), Mathematical Topics in Fluid Mechanics, Volume 1: Incompressible Models, Oxford Lecture Series in Mathematics and Its Applications, No. 3, Clarendon Press.
21.
Galdi GP (1994) An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Linearized Steady Problems, Springer-Verlag.
22.
Galdi GP (1994), An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Nonlinear Steady Problems, Springer-Verlag.
23.
Constantin
P
(
1995
),
Not. Am. Math. Soc.
42
,
658
663
.
24.
Doering CR and Gibbon JD (1995), Applied Analysis of the Navier-Stokes Equations, Cambridge Univ Press, Cambridge.
25.
Lions P-L (1998), Mathematical Topics in Fluid Mechanics, Volume 2: Compressible Models, Oxford Lecture Series in Mathematics and Its Applications, No. 10, Clarendon Press.
26.
Solonnikov
VA
and
Kazhikov
AV
(
1981
),
Existence theorems for the equations of motion of a compressible viscous fluid
,
Annu. Rev. Fluid Mech.
13
,
79
95
.
27.
Valli A (1992), Mathematical results for compressible flows, In: Mathematical Topics in Fluid Mechanics, JF Rodrigues and A Sequeira (eds), Longman, New York 193–229.
28.
Kazhikov A (1994), Some new statements for initial boundary value problems for Navier-Stokes equations of viscous gas. In: Progress in Theoretical and Computational Fluid Mechanics, GP Galdi, J Maàlek, and J Necaàs (eds), 33–72, Longman, New York.
29.
Zeytounian
RKh
(
1999
),
Well-posedness of problems in fluid dynamics (a fluid-dynamical point of view
),
Russian Math. Surveys
54
,
479
564
.
30.
Lagrange JL (1781), Mémoire sur la théorie du mouvement des fluides, Nouv Mém Acad Berlin, 151–198.
31.
Cauchy A (1827), Mémoire sur la théorie des ondes, Mém de l’Acad Roy des Sciences I.
32.
Lamb H (1932), Hydrodynamics, Cambridge Univ Press.
33.
Kutta WM (1910), Sitzb d k bayr Akad Wiss.
34.
Strijevski, I (1958), Joukovski, Fondateur de la Science Aéronautique, Editions en langues étrangères, Moscou.
35.
Villat
H
(
1972
),
As luck would have it-a few mathematical reflections
,
Annu. Rev. Fluid Mech.
4
,
1
5
.
36.
Stewartson
K
(
1981
),
D’Alembert’s paradox
,
SIAM Rev.
23
,
308
345
.
37.
Birkhoff G and Zarantonello EH (1957), Jets, Wakes and Cavities, Academic Press, New York.
38.
Prandtl L (1904), Uber Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhanl. III, Internat. Math.- Kongresses, Heidelberg, 484–491.
39.
Guiraud JP and Zeytounian RKh (eds) (1986), Asymptotic modelling of fluid flows, J. Mec. Theor. Appl., Special Issue.
40.
Mangler
KW
and
Smith
JHB
(
1970
),
Behavior of the vortex sheet at the trailing edge of a lifting wing
,
Aero Journ Roy Aeron Soc
74
,
906
908
.
41.
Sychev
VV
(
1972
),
Concerning laminar separation
,
Isv Akad Nauk SSSR, Mekh Zhidk i Gaza
3
,
47
59
.
42.
Smith
FT
(
1977
),
The laminar separation of an incompressible fluid streaming past a smooth surface
,
Proc. R. Soc. London, Ser. A
A356
,
433
463
.
43.
Guiraud
JP
and
Zeytounian
RKh
(
1979
),
Séparation d’une nappe tourbillonnaire sur une surface réguliére aà grand nombre de Reynolds
,
J. Mec.
18
,
423
431
.
44.
Riemann B (1851), Grundlagen für eine Allgemeine Theorie der Functionen einer Veränderlichen Complexen Gro¨sse, Go¨ttingen.
45.
Kelvin L (Sir W Thomson) (1869), On vortex motion, Edin Trans. XXV.
46.
Zeytounian
RKh
(
1995
),
Nonlinear long waves on water and solitons
,
Phys. Usp.
38
,
1333
1381
.
47.
Zabusky
NJ
and
Kruskal
MD
(
1965
),
Interactions of ‘solitons’ in a collisionless plasma and the recurrence of initial states
,
Phys. Rev. Lett.
15
,
240
240
.
48.
Kelvin L (Sir W Thomson) (1848), Cambridge and Dublin Math J Feb.
49.
Green
G
(
1839
),
Cambridge Trans
VII
,
279
279
.
50.
Airy
GB
(
1845
),
Tides and waves
, In:
Encyclopaedia Metropolitana
5
,
241
241
.
51.
Poisson SD (1816), Mémoire sur la théorie des ondes, Mémoires de l’Acad Roy des Sciences I.
52.
Rayleigh
Lord
(
1876
),
Philos. Mag. Scientific Papers
I
,
251
251
.
53.
Popoff
A
(
1858
),
Liouville
III
(
2
),
251
251
.
54.
Stokes
GG
(
1847
),
On the theory of oscillatory waves
,
Cambr Trans
8
,
441
473
.
55.
Levi-Civita
T
(
1925
),
Math. Ann.
93
,
264
264
.
56.
Struik
DJ
(
1926
),
Math Annalen
95
,
595
595
.
57.
Gerstner FL (1809), Abh d k bo¨hm Ges d Wiss and Gilbert’s Annalen Physik, XXXII.
58.
Rankine WJM (1863), Philos. Trans. R. Soc. London, 481.
59.
Boussinesq
J
(
1871
),
C R Acad Sci
72
,
755
755
.
60.
Boussinesq
J
(
1871
),
C R Acad Sci
73
,
256
256
.
61.
Boussinesq
J
(
1872
),
J. Math. Pures Appl.
17
(
2
),
55
55
.
62.
Boussinesq J (1877), Essai sur la théorie des eaux courantes, Mémoires présentés par divers Savants l’Academie des Sciences (Institut de France) série 2, Vol 23, 1 and Vol 24, 1.
63.
Saint-Venant
AJB de
(
1871
),
Théorie du mouvement non permanent des eaux
,
Institut de France, Acad. Sci., Paris, C. R.
73
(
3
)
147
147
and 73(4), 237 .
64.
Russell JS (1844), Report on waves, Report on the 14th Meeting of the British Association for the Advancement of Science, York, 311, John Murray, London.
65.
Ursell
F
(
1953
),
Proc. Cambridge Philos. Soc.
49
,
685
685
.
66.
Korteweg
DJ
and
de Vries
G
(
1895
),
Philos. Mag.
39
,
422
422
.
67.
Newell AC (1985), Solitons in Mathematics and Physics, SIAM, Philadelphia.
68.
von Mayer
JR
(
1842
),
Bemerkungen über die Kräfte der unbelebten
,
Natur Ann der Chemie
61
,
233
240
.
69.
Birch T (1744), The Works of the Honourable Robert Boyle, 5 Volumes, London.
70.
Kirchhoff
G
(
1868
),
Ann. Phys. (Leipzig)
134
,
177
193
.
71.
Lanchester FW (1907), Aerodynamics, Constable, London.
72.
Kaplun
S
(
1954
),
The role of coordinate systems in boundary-layer theory
,
ZAMP
5
,
111
135
.
73.
Kaplun
S
(
1957
),
Low Reynolds number flow past a circular cylinder
J. Math. Mech.
6
,
595
603
.
74.
Kaplun
S
and
Lagerstrom
PA
(
1957
),
Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers
,
J Rat Mech Anal
6
,
585
593
.
75.
Lagerstrom PA (1988), Matched Asymptotic Expansions: Ideas and Techniques, Applied Mathematical Sciences, Vol 76, Springer-Verlag, New York.
76.
Oleinik
OA
(
1963
),
On a system of equations in boundary layer theory
,
Zhurn Vychislit Mat Fiz
3
,
489
507
.
77.
Nickel
K
(
1973
),
Prandtl’s boundary-layer theory from the viewpoint of a mathematician
,
Annu. Rev. Fluid Mech.
5
,
405
428
.
78.
Weinan
E
(
2000
),
Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation
,
Acta Mech. Sin.
16
,
207
218
.
79.
Goldstein
S
(
1948
),
On laminar boundary layer flow near a point of separation
,
Q. J. Mech. Appl. Math.
1
,
43
69
.
80.
Stewartson
K
(
1970
),
Is the singularity at separation removable?
J. Fluid Mech.
44
,
347
364
.
81.
Guiraud
JP
(
1995
),
Going on with Asymptotics.
In:
Asymptotic Modelling in Fluid Mechanics, Lecture Notes in Physics
, PA Bois, E Dériat, R Gatignol, and A Rigolot (eds)
442
,
257
307
.
82.
Catherall
D
and
Mangler
KW
(
1966
),
The integration of the two-dimensional laminar boundary-layer equations past the point of vanishing skin friction
,
J. Fluid Mech.
26
,
163
182
.
83.
Neiland
VYa
(
1969
),
Towards a theory of separation of the laminar boundary layer in a supersonic stream
,
Izv. Akad. Nauk. SSSR, Mekh. Zhidk. Gaza
4
,
33
35
.
84.
Stewartson
K
and
Williams
PG
(
1969
),
Self-induced separation
,
Proc. R. Soc. London, Ser. A
A312
,
181
206
.
85.
Nayfeh
AH
(
1991
),
Triple deck structure
,
Comput. Fluids
20
,
269
292
.
86.
Meyer
RE
(
1983
),
A view of the triple deck
,
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
43
,
639
663
.
87.
Lighthill
MJ
(
1953
),
On boundary layers and upstream influence. II. Supersonic flows without separation
,
Proc. R. Soc. London, Ser. A
217
,
478
507
.
88.
Mauss J (1995), Asymptotic modelling for separating boundary layers, In: Lecture Notes in Physics 442, 239–254.
89.
Smith
FT
(
1982
),
On the high Reynolds number theory of laminar flows
,
IMA J. Appl. Math.
28
,
207
281
.
90.
Sychev VV (ed) (1987), Asymptotic Theory of Separating Flows, Nauka, Moscou (in Russian).
91.
Stokes
GG
(
1851
),
Trans. Cambridge Philos. Soc.
ix
(
8
), Papers iii,
1
1
.
92.
Oseen CW (1910), Arkiv fo¨r matematik, Bd vi, No. 29.
93.
Lagerstrom PA (1964), Laminar flow theory, In: Theory of Laminar Flows, FK Moore (ed), Section B, 20–285, Princeton Univ Press.
94.
Sano
T
(
1981
),
Unsteady flow past a sphere at low Reynolds number
,
J. Fluid Mech.
112
,
433
441
.
95.
Truesdell
C
(
1952
),
The mechanical foundations of elasticity and fluid dynamics
,
J Rat Mech Anal
1
,
125
300
.
96.
Truesdell
C
(
1953
),
Notes on the history of the general equations of hydrodynamics
,
Am. Math. Monthly
60
,
445
458
.
97.
Truesdell C (1966), The Mechanical Foundations of Elasticity and Fluid Dynamics, Gordon and Breach, New York.
98.
Truesdell C (1952), Vorticity and the thermodynamic state in a gas flow, Mémorial des Sciences Mathématiques, Fascicule 119, Paris.
99.
Poincaré H (1892), Thermodynamique, Gauthier-Villars.
100.
Truesdell C and Muncaster RG (1980), Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas, Academic Press, New York.
101.
Majda A (1985), Mathematical foundations of incompressible fluid flow, Princeton Univ, Dept of Math, Lecture Notes.
102.
Wilcox C (1975), Scattering theory for the d’Alembert equation in exterior domain, In: Lect. Notes Math. 442, Springer-Verlag Berlin.
103.
Zeytounian
RKh
(
2000
),
An asymptotic derivation of the initial condition for the incompressible and viscous external unsteady fluid flow problem
,
Int. J. Eng. Sci.
38
,
1983
1992
.
104.
Oberbeck
A
(
1879
),
Ann. Phys. (Leipzig)
7
,
271
292
.
105.
Boussinesq J (1903), Théorie Analytique de la Chaleur, Vol 2, Gauthier-Villars, Paris.
106.
Joseph DD (1976), Stability of Fluid Motions II, Springer-Verlag, Heidelberg.
107.
Bénard
H
(
1900
),
Rev. Gen. Sci. Pures Appl.
11
,
1261
1261
.
108.
Zeytounian
RKh
(
1989
),
The Bénard problem for deep convection: rigorous derivation of approximate equations
,
Int. J. Eng. Sci.
27
,
1361
1366
.
109.
Zeytounian
RKh
(
1997
),
The Bénard-Marangoni thermocapillary instability problem: on the role of the buoyancy
,
Int. J. Eng. Sci.
35
,
455
466
.
110.
Charki
Z
(
1996
),
The initial value problem for the deep Bénard convection equations with data in Lq,
Math Models Methods Appl Sci
6
,
269
277
.
111.
Errafiy
M
and
Zeytounian
RKh
(
1991
),
The Bénard problem for deep convection: Linear theory
,
Int. J. Eng. Sci.
29
,
625
635
.
112.
Errafiy
M
and
Zeytounian
RKh
(
1991
),
The Bénard problem for deep convection: Routes to chaos
,
Int. J. Eng. Sci.
29
,
1363
1373
.
113.
Rajagopal
KR
,
Ruzicka
M
, and
Srinivasa
AR
(
1996
),
On the Oberbeck-Boussinesq approximation
,
Math Models Methods Appl Sci
6
,
1157
1167
.
114.
Drazin PG and Reid WH (1981), Hydrodynamic Stability, Cambridge Univ Press, Cambridge.
115.
Zeytounian RKh (1990), Asymptotic Modeling of Atmospheric Flows, Springer-Verlag, Heidelberg.
116.
Bois
PA
(
1991
),
Asymptotic aspects of the Boussinesq approximation for gases and liquids
,
Geophys. Astrophys. Fluid Dyn.
58
,
45
55
.
117.
Van Dyke M (1975), Perturbation Methods in Fluid Mechanics, Annotated edition, Parabolic Press, Stanford CA.
118.
Eckhaus W (1979), Asymptotic Analysis of Singular Perturbations, Studies in Math and its Applications 9, North-Holland, Amsterdam.
119.
Nayfeh AH (1981), Introduction to Perturbation Techniques, Wiley, New York.
120.
Zeytounian RKh (1994), Modélisation asymptotique en mécanique des fluides newtoniens, Mathématiques et Applications, Soc. Math. Appl. Ind. 15, Springer-Verlag, Berlin, Heidelberg.
121.
Kevorkian J and Cole JD (1996), Multi Scale and Singular Perturbation Methods, AMS 114, Springer-Verlag, New York.
122.
Maxwell
JC
(
1867
),
On the dynamic theory of gases
,
Philos. Trans. R. Soc. London
157
,
49
88
.
123.
Boltzmann L (1872), Sitzungsberichte Akad Wiss, Vienna, Part II, 66, 275–370.
124.
Lax PD (1973), Hyperbolic systems of conservation laws and the mathematical theory of shocks waves, In: Regional Conf Series in Appl Math 11, SIAM, Philadelphia.
125.
Hilbert
D
(
1912
),
Math. Ann.
72
,
562
562
.
126.
Chapman
S
(
1916
),
Philos. Trans. R. Soc. London
A216
,
279
279
.
127.
Enskog D (1917), Dissertation, Uppsala.
128.
Grad
H
(
1963
),
Asymptotic theory of the Boltzmann equation
,
Phys. Fluids
6
,
147
181
.
129.
Grad H (1966), Transport Theory, SIAM-AMS Proc 20, Abu Shumaya (ed), 269–308.
130.
Chapman S and Cowling TG (1952), The Mathematical Theory of Nonuniform Gases, Cambridge Univ Press, Cambridge.
131.
Darrozès JS (1969), Approximate solutions of the Boltzmann equation for flows past bodies of moderate curvature, In: Rarefied Gas Dynamics, L Trilling and HY Wachman (eds), Vol 1, 111–120, Academic Press.
132.
Darrozès JS (1970), ONERA-Publication, no 130 (edited in 1972).
133.
Van Dyke
M
(
1962
),
Higher approximations in boundary-layer theory, Parts 1 and 2
,
J. Fluid Mech.
14
,
161
1777
and 481–495.
134.
Lachowicz M (1995), Asymptotic analysis of nonlinear kinetic equations: The hydrodynamic limit, In: Lecture Notes in the Mathematical Theory of the Boltzmann Equation, World Sci.
135.
Perthame B (1995), Introduction to the collision models in Boltzmann’s theory. Publications du Lab Anal Num R95026, Univ P et M Curie.
136.
Cercignani C (1975), Theory and Application of the Boltzmann Equation, Scottish Academic Press.
137.
Guiraud JP (1973), Gas dynamics from the point of view of kinetic theory, Proc of 13th Int Conf on Theor and Appl Mech (ICTAM, Moscow, Aug. 1972), E Becker and GK Mikhailov (eds), 104–123, Springer-Verlag.
138.
Sone Y (1991), Asymptotic theory of a steady flow of a rarefied gas past bodies for small Knudsen numbers, In: Progress in Mechanics, Springer-Verlag.
139.
Sideris
TC
(
1985
),
Formation of singularities in three-dimensional compressible fluids
,
Commun. Math. Phys.
101
,
475
485
.
140.
Bardos
C
,
Golse
F
, and
Levermore
D
(
1991
),
Fluid dynamics limit of kinetic equations I: Formal derivation
,
J. Stat. Phys.
63
,
323
344
.
141.
Bardos
C
,
Golse
F
, and
Levermore
D
(
1993
),
Fluid dynamics limit of kinetic equations II
,
Commun. Pure Appl. Math.
46
,
667
753
.
142.
Lions
P-L
,
Perthame
B
, and
Tadmor
E
(
1991
),
Formulation cinétique des lois de conservation scalaires
,
C R Acad Sci Paris
312
, I,
97
102
.
143.
DiPerna
RJ
and
Lions
P-L
(
1990
),
On the Cauchy problem for the Boltzmann equation: Global existence and weak stability results
,
Ann. Math.
130
,
1189
1214
.
144.
DiPerna
RJ
and
Lions
P-L
(
1991
),
Global solutions of the Boltzmann and the entropy inequality
,
Arch Rat Math Anal
114
,
47
55
.
145.
Lions
P-L
(
1994
),
Compactness in Boltzmann equation via Fourier integrals operator and applications, I.
,
J Math, Kyoto Univ
34
,
391
427
.
146.
Lions
P-L
(
1994
),
Compactness in Boltzmann equation via Fourier integrals operator and applications, II
,
J Math, Kyoto Univ
34
,
429
461
.
147.
Kreiss
HO
(
1970
),
Initial boundary value problems for hyperbolic equations
,
Commun. Pure Appl. Math.
23
,
277
298
.
148.
Kreiss
HO
(
1974
),
Boundary conditions for hyperbolic differential equations. In:
Lect. Notes Math.
363
,
Springer-Verlag Berlin
,
64
74
.
149.
Belov
YuYa
and
Yanenko
NN
(
1971
),
Influence of viscosity on the smoothness of solutions of incompletely parabolic system
,
Math Notes
10
,
480
483
.
150.
Oliger
J
and
Sundstro¨m
A
(
1978
),
Theoretical and practical aspects of some initial boundary value problems in fluid dynamics
,
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
35
,
419
446
.
151.
Majda A (1984), Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, AMS 53, Springer-Verlag, New York.
152.
Kreiss HO and Lorenz J (1989), Initial Boundary Value Problems and the Navier-Stokes Equations, Academic Press, Boston.
153.
Zeytounian RKh (1991), Meteorological Fluid Dynamics, Lecture Notes in Physics, Vol m5, Springer-Verlag, Heidelberg.
154.
Greenspan HP (1968) The Theory of Rotating Fluids, Cambridge Univ Press.
155.
Nayfeh AH (1973), Perturbation Methods, Wiley, New York.
156.
Beiraào da Veiga
H
(
1994
),
Singular limits in compressible fluid dynamics
,
Arch. Ration. Mech. Anal.
128
,
313
327
.
157.
Gresho
PM
(
1992
),
Some interesting issues in incompressible fluid dynamics, both in the continuum and in numerical simulation
,
Adv. Appl. Mech.
28
,
46
140
.
158.
Gustafsson
B
and
Sundstro¨m
A
(
1978
),
Incompletely parabolic problems in fluid dynamics
,
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
35
,
343
357
.
159.
Viviand H and Veuillot J (1978), Publication ONERA, No. 1978–4.
160.
Viviand H (1983), Publication ONERA, No. 1983–4.
161.
Zeytounian RKh (2000), Theoretical aspects of interfacial phenomena and Marangoni effect: Modelling and stability, CISM Notes to Advanced School, coordinated by MG Velarde and RKh Zeytounian, (Udine, 10–14 July 2000), 68 pages.
162.
Whitham GB (1974), Linear and Nonlinear Waves, Wiley-Interscience, New York.
163.
Dobrokhotov
SYu
and
Safarevich
AI
(
1996
),
On the behavior of an incompressible fluid velocity field at infinity
,
Fluid Dyn.
31
,
511
514
.
164.
Serrin J (1959), Mathematical principles of classical fluid mechanics, In: Handbuch der Physik VIII/1, Springer-Verlag, Berlin, 125–263.
165.
Serrin
J
(
1959
),
On the uniqueness of compressible fluid motion
,
Arch. Ration. Mech. Anal.
3
,
271
288
.
166.
Batchelor
GK
(
1956
),
On steady laminar flow with closed streamlines at large Reynolds number
,
J. Fluid Mech.
1
,
177
190
.
167.
Wood
WW
(
1957
),
Boundary layers whose streamlines are closed
,
J. Fluid Mech.
2
,
77
87
.
168.
Guiraud
JP
and
Zeytounian
RKh
(
1984
),
The setting in motion of a viscous liquid inside a two-dimensional cavity
,
USSR Comput. Math. Phys.
24
(
4
),
92
94
.
169.
Ball
J
(
1997
),
Remarks on blow-up and nonexistence theorems for nonlinear evolution equations
,
Quarterly J. Math.
28
(
2
),
473
486
.
170.
Antontsev SN, Kazhikhov AV, and Monakhov VN (1983), Boundary Value Problems in Mechanics of Inhomogeneous Fluids, Nauka, Novosibirsk (in Russian, North-Holland, Amsterdam, 1990).
171.
Lions
P-L
(
1993
),
Compacité des solutions de Navier-Stokes compressible isentropiques
,
C R Acad Sci Paris
317
, I,
115
120
.
172.
Leray
J
(
1933
),
Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique
,
J. Math. Pures Appl.
12
,
1
82
.
173.
Hopf
E
(
1951
),
U¨ber die Anfangswertaufgabe für die hydrodynamischen Grund-gleichungen
,
Math. Nachr.
4
,
213
231
.
174.
Valli A (1986), Navier-Stokes equations for compressible fluids: Global estimates and periodic solutions, In: Proc of Symp in Pure Mathematics (AMS) 45, Part 2, 467–476.
175.
Eckmann
JP
(
1981
),
Roads to turbulence in dissipative dynamical systems
,
Rev. Mod. Phys.
53
,
643
654
.
176.
Richtmyer RD (1978), Principles of Advanced Mathematical Physics, Vol 1, Springer-Verlag, New York.
177.
Wolibner
W
(
1933
),
Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long
,
Math. Z.
37
,
698
726
.
178.
Yudovich
VI
(
1963
),
Non-stationary flow of an ideal incompressible liquid
,
USSR Comput. Math. Math. Phys.
3
,
1407
1456
.
179.
Kato
T
(
1967
),
On classical solution of the two-dimensional non-stationary Euler equation
,
Arch. Ration. Mech. Anal.
25
,
188
200
.
180.
Bardos
C
(
1972
),
Existence et unicité de la solution de l’équation d’Euler en dimension deux
,
J. Math. Anal. Appl.
40
,
769
790
.
181.
Kato T (1992), A remark on a theorem of C Bardos on the 2D-Euler equation, Dept of Math, Univ of California, preprint.
182.
Ebin
D
and
Marsden
J
(
1970
),
Groups of diffeomorphisms on the motion of an incompressible fluid
,
Ann. Math.
92
,
102
163
.
183.
Kato
T
(
1972
),
Non-stationary flows of viscous and ideal fluids in R3,
J. Funct. Anal.
9
,
296
309
.
184.
Bourguignon
JP
and
Brezis
H
(
1974
),
Remarks on the Euler equations
,
J. Funct. Anal.
15
,
341
363
.
185.
Temam
R
(
1975
),
On the Euler equation of incompressible perfect fluids
,
J. Funct. Anal.
20
,
32
43
.
186.
Temam R (1976), Local existence of C solution of the Euler equations of incompressible perfect fluids, In: Lect. Notes Math. 565, Springer-Verlag, New York.
187.
Temam
R
(
1986
),
Remarks on the Euler equations, In:
Nonlinear Functional Analysis and its Applications
,
F
Browder
(ed),
AMS Proc of Symposia in Pure Mathematics
45
, Part
2
,
429
430
.
188.
Kato
T
and
Ponce
G
(
1988
),
Commutator estimates and Navier-Stokes equations
,
Commun. Pure Appl. Math.
41
,
893
907
.
189.
Sulem C and Sulem PL (1983), The well-posedness of two-dimensional ideal flow, J. Mec. Theor. Appl. Special Issue, 217–242.
190.
Sulem
C
,
Sulem
PL
,
Bardos
C
, and
Frisch
U
(
1981
),
Finite time analyticity for the two and three dimensional Kelvin-Helmholtz instability
,
Commun. Math. Phys.
80
,
769
790
.
191.
Moore
DW
(
1979
),
The spontaneous appearance of a singularity in the shape of an evolution vortex sheet
,
Proc. R. Soc. London, Ser. A
365
,
105
119
.
192.
Guiraud
JP
and
Zeytounian
RKh
(
1979
),
Note sur un mécanisme d’instabilité pour le coeur d’une nappe tourbillonnaire enroulée
,
Rech. Aerosp.
2
,
85
88
.
193.
Bardos C (1978), Nonlinear Euler equation and Burgers equation: Relation with turbulence, nonlinear partial differential equations and applications, Proc Indiana 1976–1977, Lect. Notes in Math. 648, Springer-Verlag.
194.
Baouendi
MS
and
Goulaouic
C
(
1983
),
Sharp estimates for analytic pseudo-differential operators and application to Cauchy problems
,
J. Diff. Eqns.
48
,
241
268
.
195.
Metivier G (1983/84), Un thèoreme de Cauchy-Kowalevski pseudo-différentiel local, Séminaire Goulaouic-Schwartz, No. 16, Ecole Polytechnique, Paris.
196.
Bardos
C
(
1976
),
Analyticité de la solution de l’équation d’Euler dans un ouvert de Rn,
C R Acad Sci, Paris
283
,
255
258
.
197.
Bardos
C
,
Benachour
S
, and
Zerner
M
(
1976
),
Analyticité des solutions périodiques de l’équation d’Euler en dimension deux
,
C R Acad Sci, Paris
282
,
995
998
.
198.
Benachour
S
(
1976
),
Analyticité des solutions périodiques de l’équation d’Euler en dimension trois
,
C R Acad Sci
,
283
,
107
110
.
199.
Alinhac
S
and
Metivier
G
(
1986
),
Propagation de l’analyticité locale pour les solutions de l’équation d’Euler
,
Arch. Ration. Mech. Anal.
92
,
287
296
.
200.
Le Bail
D
(
1986
),
Analyticité locale pour les solutions de l’équation d’Euler
,
Arch. Ration. Mech. Anal.
95
,
117
136
.
201.
Okazawa
N
(
1996
),
Comm on Appl Nonlinear Anal
3
,
107
113
.
202.
Ghidaglia
JM
(
1984
),
Commun. Partial Differ. Equ.
9
,
1265
1298
.
203.
Lions
P-L
,
Perthame
B
, and
Souganidis
PE
(
1996
),
Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates
,
Commun. Pure Appl. Math.
49
,
599
638
.
204.
DiPerna
RJ
(
1983
),
Convergence of the viscosity method for isentropic gas dynamics
,
Commun. Math. Phys.
91
,
1
30
.
205.
DiPerna
RJ
(
1983
),
Convergence of approximate solutions to conservation laws
,
Arch Rat Math Anal
82
,
27
70
.
206.
Brenier Y (1994), In: Partial Differential Equations of Elliptic Type, Sympos Math XXXV (held in Cortona, 1992), Cambridge Univ Press, Cambridge, 123–148.
207.
Constantin
P
,
Titi
ES
, and
Weinan
F
(
1994
),
Onsager conjecture on the energy conservation for solutions of Euler equation
,
Commun. Math. Phys.
165
(
1
),
207
209
.
208.
Onsager
L
(
1949
),
Statistical hydrodynamics
,
Nuovo Cimento
6
, Supplement No
2
,
279
287
.
209.
Arendt
S
(
1994
),
On the non-existence of steady confined flows of a barotropic fluid in a gravitational field
,
J. Fluid Mech.
271
,
341
350
.
210.
Blokhin
AM
and
Birkin
AD
(
1996
),
Math Model
8
,
89
104
(in Russia).
211.
Benney
DJ
(
1976
),
Significant interactions between small and large scale surface waves
,
Stud. Appl. Math.
55
,
93
106
.
212.
Tsutsumi
M
and
Hatano
S
(
1994
),
Well-posedness of the Cauchy problem for the long wave-short wave resonance equations
,
Nonlinear Analysis: Theory, Methods, Appl.
22
,
155
171
.
213.
Craig
W
,
Sulem
C
, and
Sulem
PL
(
1992
),
Nonlinear modulation of gravity waves: a rigorous approach
,
Nonlinearity
5
,
497
522
.
214.
Shen
SSP
(
1995
),
On the accuracy of the stationary forced Korteweg-DeVries equation as a model equation for flows over a bump
,
Q. Appl. Math.
LIII
,
701
719
.
215.
Caprino
S
and
Marchioro
C
(
1986
),
On nonlinear stability of stationary planar Euler flows in an unbounded strip
,
Nonlinear Anal.: Theory, Methods, Appl.
10
,
1263
1275
.
216.
Chemin JY (1991), Persistence de structure geometriques dans les fluides incompressibles bidimensionels, Preprint.
217.
Chemin JY (1991), Séminaire sur les Equations aux Derivées Partielles 1990-1991, Exp. No XIII, Ecole Polytech, Palaiseau, 11 pp.
218.
Chemin
JY
(
1993
),
Ann Sci Ecole Norm Sup
26
,
517
542
.
219.
Serfati
P
(
1994
),
C. R. Acad. Sci., Ser. I: Math.
318
,
515
518
.
220.
Serre
D
(
1997
),
Math. Rev.
MR97d/76007
,
2613
2613
.
221.
Majda
A
(
1986
),
Vorticity and the mathematical theory of incompressible fluid flow
,
Commun. Pure Appl. Math.
39
,
S187–S220
S187–S220
.
222.
Alinhac
S
(
1991
),
J. Funct. Anal.
98
,
361
379
.
223.
Bertozzi AL and Constantin P (1992), Global regularity for vortex patches, Dept of Math, Univ of Chicago, preprint.
224.
Duchon
J
and
Robert
R
(
1988
),
Global vortex sheet solutions of Euler equations in the plane
,
J. Diff. Eqns.
73
,
215
224
.
225.
McGrath
FJ
(
1968
),
Non-stationary plane flow of viscous and ideal fluids
,
Ach Rat Math Anal
27
,
329
329
.
226.
Swann
H
(
1971
),
The convergence with vanishing viscosity of stationary Navier-Stokes flow to ideal flow in R3,
Trans. Am. Math. Soc.
157
,
373
397
.
227.
Kato
T
(
1975
),
Quasi-linear equations of evolution with application to partial differential equations
. In:
Lect. Notes Math.
448
,
25
70
,
Springer-Verlag, New York
.
228.
Marchioro C and Pulvirenti M (1984), Vortex Methods in Two-Dimensional Fluid Dynamics, Lecture Notes in Physics 203, Springer-Verlag, Berlin.
229.
Esposito
R
,
Marra
R
,
Pulvirenti
M
, and
Sciarretta
C
(
1988
),
A stochastic Lagrangian formalism for the 3-D Navier-Stokes flow
,
Commun. Partial Differ. Equ.
13
,
1601
1601
.
230.
Beiraào da Veiga
H
(
1981
),
On the barotropic motion of compressible perfect fluids
,
An Scuola Norm Sup Pisa
8
,
317
351
.
231.
Graffi
D
(
1953
),
Il teorema di unicitaà nella dinamica dei fluidi compressibili
,
J Rat Mech Anal Math
2
,
99
106
.
232.
Secchi
P
(
1983
),
Existence theorems for compressible viscous fluids having zero shear viscosity
,
Rend Sem Mat Univ Padova
70
,
73
102
.
233.
Ladhyzhenskaya OA (1961), The Mathematical Theory of Viscous Incompressible Flow (in Russian), Gos Izdat Fiz-Mat Lit, Moskva, (Gordon and Breach, New York, 1963, 2nd edition, 1969).
234.
Shinbrot M (1973), Lectures on Fluid Mechanics, Gordon and Breach, New York.
235.
Temam R (1983), The Navier-Stokes Equations and Non-Linear Functional Analysis, CBMS-NSF Regional Conf Series in Applied Mathematics, SIAM, Philadelphia PA.
236.
Temam R (1977), Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam (3rd ed, 1984).
237.
Temam R (1988), Infinite Dimensional Dynamical Systems in Mechanics and Physics, Appl Math Sci 68, Springer-Verlag, New York.
238.
Heywood
JG
(
1980
),
The Navier-Stokes equations: on the existence, regularity and decay of solutions
,
Indiana Univ. Math. J.
29
,
639
680
.
239.
Simon J (1989), Non-homogeneous viscous incompressible fluids: existence of velocity, density and pressure, Publ Lab d’Analyze Numérique, Univ P et M Curie, Paris, R89004, 47 pp.
240.
Amick CJ (1986), On steady Navier-Stokes flow past a body in the plane. In: Proc of Symp in Pure Mathematics 45, 37–50.
241.
Ben-Artzi
M
(
1994
),
Global solutions of 2-dimensional Navier-Stokes and Euler equations
,
Arch. Ration. Mech. Anal.
128
,
329
358
.
242.
Brezis
H
(
1994
),
Global solutions of 2-dimensional Navier-Stokes and Euler equations—Remarks
,
Arch. Ration. Mech. Anal.
128
,
359
360
.
243.
Galdi
GP
and
Sohr
H
(
1995
),
Arch. Ration. Mech. Anal.
131
,
101
119
.
244.
Galdi GP (1993), Existence and uniqueness at low Reynolds number of stationary plane flow of a viscous fluid in exterior domains, In: Recent Developments in Theoretical Fluid Mechanics, GP Galdi and J Nečas (eds), 291, 1–33, Longman, New York.
245.
Amick
CJ
(
1988
),
On Leray’s problem of steady Navier-Stokes flow past a body in the plane
,
Acta Math.
161
,
71
130
.
246.
Amann
H
(
1994
),
Stability of the rest state of a viscous incompressible fluid
,
Arch. Ration. Mech. Anal.
126
,
231
242
.
247.
Kozono
H
and
Ogawa
T
(
1993
),
Arch. Ration. Mech. Anal.
122
,
1
17
.
248.
Frehse
J
and
Ruàzicka
M
(
1994
),
Arch. Ration. Mech. Anal.
128
,
361
380
.
249.
Tani
A
and
Tanaka
N
(
1995
),
Arch. Ration. Mech. Anal.
130
,
303
314
.
250.
Tani
A
(
1996
),
Arch. Ration. Mech. Anal.
133
,
299
331
.
251.
Elizarova TG and Chetverushkin BN (1986), In: Mathematical Modelling Processes in Non-Linear Media, 261–278, Nauka, Moscow.
252.
Sheretov
YuV
(
1994
),
Comp Maths Phys
34
,
409
415
.
253.
Padula
M
and
Petunin
I
(
1994
),
Asymptotic behavior of solutions to the exterior problem for the Oberbeck-Boussinesq equations
,
Eur. J. Mech. B/Fluids
13
(
6
),
701
730
.
254.
Glushko
AV
and
Glushko
YeG
(
1995
),
USSR Comput. Math. Math. Phys.
35
,
1019
1024
.
255.
Bernardini
C
,
Metivet
B
, and
Pernaud-Thomas
B
(
1995
),
Math. Modell. Numer. Anal.
29
,
871
921
.
256.
Szepessy
A
and
Zumbrun
K
(
1996
),
Arch. Ration. Mech. Anal.
133
,
249
298
.
257.
Galdi
GP
,
Heywood
JG
, and
Shibata
Y
(
1997
),
On the global existence and convergence to steady state of Navier-Stokes flow past an obstacle that is started from rest
,
Arch. Ration. Mech. Anal.
138
,
307
318
.
258.
Kato
T
(
1984
),
Strong Lp-solutions of the Navier-Stokes equation in Rm, with applications to weak solutions
,
Math. Z.
187
,
471
480
.
259.
Shibata Y (1995), An exterior initial boundary value problem for Navier-Stokes equation, Math Research Note, Inst of Mathematics, Univ of Tsukuba.
260.
Heywood
JG
(
1979
),
A uniqueness theorem for nonstationary Navier-Stokes flow past an obstacle
,
Annali Sc Norm Pisa
6
,
427
444
.
261.
Ladyzhenskaya
OA
and
Solonnikov
VA
(
1980
),
Determination of solutions of boundary value problems for steady-state Stokes and Navier-Stokes equations having an infinite Dirichlet integral
,
Zap. Nauchn. Semin. LOMI
96
,
117
160
.
262.
Solonnikov
VA
(
1993
),
On the boundary value problem with discontinuous boundary data for the Navier-Stokes equations in three-dimensional case
,
Algebra Anal.
5
,
252
270
.
263.
Solonnikov
VA
(
1993
),
Evolution free boundary problem for equation of motion of viscous compressible barotropic self-graviting fluid
,
SAACM
3
,
257
275
.
264.
Solonnikov
VA
(
1994
),
Zap. Nauchn. Semin. POMI
213
,
179
205
.
265.
Solonnikov
VA
(
1995
),
Free boundary problems for the Navier-Stokes equations with moving contact points, Free boundary problems: Theory and applications
,
Pitman Res. Notes in Math Series
323
,
213
214
.
266.
Heywood JG (1994), Remarks on the possible global regularity of solutions of the three-dimensional Navier-Stokes equations, In: Progress in Theoretical and Computational Fluid Mechanics, GP Galdi, J Málek, and J Necás (eds), 1–32, Longman, New York.
267.
Cottet GH (1992), Two dimensional incompressible fluid flow with singular initial data. In: Mathematical Topics in Fluid Mechanics, JF Rodrigues and A Sequeira (eds), 32–49, Longman Scientific and Technical, New York.
268.
Bartucelli
MV
,
Doering
CR
, and
Gibbon
JD
(
1991
),
Ladder theorem for the 2D and 3D Navier-Stokes equations on a finite periodic domain
,
Nonlinearity
4
,
531
542
.
269.
Bartucelli
MV
,
Doering
CR
,
Gibbon
JD
, and
Malham
SJA
(
1993
),
Length scales in solutions of the Navier-Stokes equations
,
Nonlinearity
6
,
549
568
.
270.
Constantin P and Foias C (1988), Navier-Stokes Equations, Univ of Chicago Press, Chicago.
271.
Valli
A
(
1983
),
Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method
,
Ann Scuola Norm Sup Pisa
10
(
4
),
607
647
.
272.
Matsumura A (1981), An energy method for the equation of motion of compressible viscous and heat-conductive fluids, MRC Technical Summary Report 2194, Univ of Wisconsin, Madison.
273.
Matsumura A and Nishida T (1981), The initial boundary value problem for the equations of motion of compressible viscous and heat-conducting fluid, MRC Technical Summary Report 2237, Univ of Wisconsin, Madison.
274.
Matsumura A and Nishida T (1982), Initial boundary value problems for the equations of motion of general fluids, In: Comp Methods in Applied Sciences and Engineering, R Glowinski and JL Lions (eds), V, North-Holland, Amsterdam, 389–406.
275.
Zajaczkowski
WM
(
1994
),
On nonstationary motion of a compressible barotropic viscous capillary fluid bounded by a free surface
,
SIAM (Soc. Ind. Appl. Math.) J. Math. Anal.
25
,
1
84
.
276.
Valli
A
(
1981
),
Uniqueness theorems for compressible viscous fluids, especially when the Stokes relation holds
,
Boll Un Mat It, Anal Funz Appl
18-C
(
5
),
317
325
.
277.
Itaya
N
(
1976
),
On the initial value problem of the motion of compressible viscous fluid, especially on the problem of uniqueness
,
J Math Kyoto Univ
16
,
413
427
.
278.
Novotny
A
and
Padula
M
(
1994
),
Lp approach to steady flows of viscous compressible fluids in exterior domains
,
Arch. Ration. Mech. Anal.
126
,
243
297
.
279.
Padula
M
(
1993
),
A representation formula for the steady solutions of a compressible fluid moving at low speed
,
Transp. Theory Stat. Phys.
21
,
593
613
.
280.
Nordstro¨m
J
(
1995
),
The use of characteristic boundary conditions for the Navier-Stokes equations
,
Comput. Fluids
24
,
609
623
.
281.
Hoff
D
(
1997
),
Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat-conducting fluids
,
Arch. Ration. Mech. Anal.
139
,
303
354
.
282.
Hoff
D
(
1995
),
Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data
,
J. Diff. Eqns.
120
,
215
254
.
283.
Desjardins
B
(
1997
),
Regularity results for two-dimensional flows of multiphase viscous fluids
,
Arch. Ration. Mech. Anal.
137
,
135
158
.
284.
Serre
D
(
1986
),
Sur l’équation monodimensionnelle d’un fluide visqueux, compressible et conducteur de chaleur
,
C R Acad Sci, Paris
303
,
703
706
.
285.
Serre
D
(
1991
),
Variations de grande amplitude pour la densité d’un fluide visqueux compressible
,
Physica D
48
,
113
128
.
286.
Valli
A
and
Zajaczkowski
WM
(
1986
),
Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in general case
,
Commun. Math. Phys.
103
,
259
296
.
287.
Eberle A, Rizzi A, and Hirschel EH (1992), Numerical Solutions of the Euler Equations for Steady Flow Problems, Verlag-Vieweg, Braunschweig.
288.
Peyret R (1996), Handbook of Computational Fluid Mechanics, Academic Press.
289.
Hadamard J (1964), La théorie des équations aux dérivées partielles, Editions Scientifiques, Peking.
290.
Heywood
JG
(
1989
),
Open problems in the theory of the Navier-Stokes equations for viscous incompressible flow
,
Lect. Notes Math.
1431
,
1
22
,
Springer-Verlag
.
291.
Galdi GP, Maàlek J, and Nečas J (eds) (1994), Progress in Theoretical and Computational Fluid Mechanics, Longman, New York.
292.
Temam R (2000), Some developments on Navier-Stokes equations in the second half of the 20th century, In: Development of Mathematics 1950-2000, J-P Pier (ed), Birkhäuser Verlag, Basel, Switzerland, 1049–1106.
293.
Zeytounian RKh and Guiraud JP (1984), Asymptotic features of low Mach number flows in aerodynamics and in the atmosphere, In: Adv in Comput Methods for Boundary and Interior Layers, JJH Miller (ed), 95–100, Boole Press, Dublin.
294.
Zeytounian RKh (2002), Asymptotic Modeling of Fluid Flow Phenomena: Some Basic Aspects, Recent Developments and Issues, Kluwer Academic Publishers, Dordrecht.
SUPPLEMENTAL BIBLIOGRAPHY
1.
Benedetto
D
,
Marchioro
C
, and
Pulvirenti
M
(
1993
),
On the Euler flow in R2,
Arch. Ration. Mech. Anal.
123
,
377
386
.
2.
Brenier
Y
(
1997
), A homogenized model for vortex sheets,
Arch Rat Math Anal
138
,
319
353
.
3.
Foias
C
and
Saut
JC
(
1986
),
Proc of Symp in Pure Mathematics
,
45
Part
I
,
439
448
.
4.
Galdi GP and J Nečas (eds) (1993), Recent Developments in Theoretical Fluid Mechanics 291, Longman, New York.
5.
Ghidaglia
M
(
1986
),
Nonlinear Analysis: Theory, Methods, & Applications
10
,
777
790
.
6.
Ladhyzhenskaya OA (1967), In: The Mathematical Problems in Fluid Mechanics, Institute of Basic Technical Problems, Polish Acad of Sci, Warszawa, 61–86.
7.
Rodrigues JF and Sequeira A (1992), Mathematical Topics in Fluid Mechanics, Longman, New York.
8.
Stewartson
K
and
Hall
MG
(
1963
),
The inner viscous solution for the core of a leading-edge vortex
,
J. Fluid Mech.
15
,
306
318
.
9.
Strikwerda
JC
(
1977
),
Initial boundary value problems for incompletely parabolic system
,
Commun. Pure Appl. Math.
30
,
797
822
.
10.
Stuart
JT
(
1986
),
Keith Stewartson: His life and work
,
Annu. Rev. Fluid Mech.
18
,
1
14
.
11.
von Mises R (1958), Mathematical Theory of Compressible Fluid Flow, Academic Press, New York.
12.
von Wahl W (1985), The Equations of Navier-Stokes and Abstract Parabolic Equations, Friedr Vieweg and Sohn, Brunschweig.
You do not currently have access to this content.