This review article gives an overview of some topics related to classical and modern problems in the theory of heat, its meaning for various branches, and thermal management of equipment. The specific requirements for new technologies involved in the thermal operation of miniaturized instruments, components of equipment, devices, units operating in fast-response regimes, improvement of heat resistance, reliability, and endurance are considered. Special requirements have been put forward for nanotechnologies, where engineering parts, elements of devices, and technological equipment have microscopic and submicroscopic dimensions. Also, the stringent requirements of thermal modes of modern large-scale technologies in such branches of industry as nuclear power engineering and rocket-space engineering have become more important and determining. The thermal modes of these technologies call for new approaches to the design of the thermodynamic state of micro- and macrosystems, high-temperature plasma, and cryogenic temperatures. New results of the study of the mechanism of heat transfer in phase transitions, principally in new approaches to the problem of enhancement of heat transfer in one- and two-phase flows are presented. The importance of studies of thermal processes providing reliable thermal modes of new power plants, microsystems, and nanotechnologies is shown. The significance of advances in the study of thermal processes for developing the theory of heat is discussed. Especially considered are achievements in the theory of heat for its role in the decisions of actual problems of biology, medicine, and environment. This review article cites 105 references, most of them in Russian.

1.
Nelson, R. A., 2000, “Do We Doubt Too Little? Examples From the Thermal Sciences,” Proc. ASME-ZSITS Int. Thermal Science Seminar, Slovenia, Bled, 1, pp. 1–9.
2.
Kraus, A. D., 1983, Thermal Analysis and Control of Electronic Equipment, Hemisphere, Washington DC.
3.
Bird, K., 2002, “Then, There, Will Be, Acceleration…,” Thermal Challenges in Next Generation Electronic Systems, 〈kiwi@computerra.ru〉
4.
Kuznetsov, N. M., Kanaev, A. A., and Kopp, I. Z., 1987, Energy Equipment for Nuclear Power Installations, Mashinostroenije State Publ, Leningrad.
5.
Yang, W.-J., and Mori, Y., eds., 1987, Heat Transfer in High Technology and Power Engineering, Hemisphere, Washington, DC.
6.
Kopp, I. Z., and Obukhovskii, S. A., 1989, Provision of Thermal Modes in Devices of Systems of Control (in Russian), Sudostroenie Press, Leningrad.
7.
Grief
R.
,
1988
, “
Natural Circulation Loops
,”
ASME J. Heat Transfer
,
110
, pp.
1243
1258
.
8.
Suris, A. L., 1987, Handbook of Thermodynamics. High Temperature Process Data (English edition, W. Begell, ed.), Hemisphere, Washington, DC.
9.
Becker, R., 1974, The Theory of Heat (Russian translation), Energy Press, Moscow.
10.
Kittel, C., and Kroemer, H., 1980, Thermal Physics, 2nd Edition, Freeman, San Francisco.
11.
Vukalovich, M. P., and Novikov, I. I., 1972, Thermodynamics (in Russian), Mashinostroenie Press, Moscow.
12.
Devis, D., 1985, Energy (in Russian), Energoizdat Press, Moscow.
13.
Dolinskii
A. A.
, and
Basok
B. I.
,
2001
, “
Discrete Pulse Transformation of Energy in an Adiabatically Boiling-up Flow
,”
Prom Teplotekhn
,
23
(
4–5
), pp.
5
20
.
14.
Bazarov, I. I., 1991, Thermodynamics (in Russian), Vysshaya Shkola Press, Moscow.
15.
Rumer, Ju. B., and Rivkin, M. S., 1977, Thermodynamics and Statistical Physics (in Russian), Nauka Press, Moscow.
16.
Kittel, C., and Kroemer, H., 1980, Thermal Physics, 2nd Edition, Freeman, San Francisco.
17.
Kittel, C., 1977, Statistical Thermodynamics (in Russian), Nauka Press, Moscow.
18.
Kouwenhoven
L. P.
, and
Venema
L. C.
,
2000
, “
Nanotechnology: Heat Flow Through Nanobridges
,”
Nature (London)
,
27
, pp.
943
948
.
19.
Gibbs, J. W., 1960, Elementary Principles in Statistical Mechanics and Foundation of Thermodynamics, Dover, New York.
20.
Gibbs, J. W., 1964, Works on Thermodynamics (in Russian), MGU Press, Moscow.
21.
Hill, T., 1963, Thermodynamics of Small Systems, Pt. 1, W. A. Benjamin, New York.
22.
Rusanov, A. I., 1967, Equilibrium of Phases and Surface Tension (in Russian), Khimiya Press, Leningrad.
23.
Kutateladze, S. S., 1984, Foundations of the Heat Transfer Theory (in Russian), Energoizdat Press, Moscow.
24.
Kalinin, E. K., Dreitser, G. A., Kopp, I. Z., and Myakochin, A. S., 1999, Efficient Surfaces Heat Transfer (in Russian), Energoatomizdat Press, Moscow (English edition (2002), Efficient Surfaces Heat Transfer, A. Bergles and W. Begell, eds., Begell House, New York).
25.
Begell, W., ed., 1983, Glossary of Terms in Heat Transfer, Fluid Flow, and Related Topics, Hemisphere, Washington, DC.
26.
Kopp, I. Z., 1978, “Influence of a Surface on Heat Transfer in Boiling of Metals,” Advances in Heat Transfer, Collection of Papers (in Russian), Energoizdat Press, Leningrad, pp. 258–274.
27.
Borishanskii, V. M., and Kopp, I. Z., 1968, “Combined Solutions of the Laplace-Gibbs and Clapeyron-Clausius Equations for Determination of the Size of a Nucleus in the Vapor Phase,” Proc. of 1st Conf. on Thermodynamics, Vol. 3 (in Russian), Nauka, Leningrad, pp. 3–9.
28.
Kopp, I. Z., 1977, “Development of the Model of Nucleus Origination in Boiling,” Heat Transfer and Hydrodynamics, Collection Papers, Vol. 1, Nauka Publ, Leningrad, pp. 71–80.
29.
Hewitt, G. F., 1998, Heat Exchanger Design Handbook, Begell House, New York.
30.
Isachenko, V. P., Osipova, V. A., and Sukomel, A. S., 1981, Heat Transfer (in Russian), Energy Publ, Moscow.
31.
Kalinin, E. K., Dreitser, G. A., and Yarkho, S. A., 1972, Enhancement of Heat Transfer in Channel, Mashinostroenie Press, Moscow.
32.
Kalinin, E. K., Dreitser, G. A., Yarkho, S. A. et al., 1981, “Otkrytiya Izobreteniya,” No. 35, 3 (USSR Discovery Diploma No. 242).
33.
Kopp, I. Z., 1973, “The Role of Real Properties of Heat Transfer Surfaces on Liquid Metals Boiling,” Advances in Heat Transfer, Energy State Publ, Leningrad, pp. 258–274.
34.
Kopp, I. Z., 1973, “Start of Boiling in Heat Pipes,” Proc. of 4th Nat. Conf. Heat and Mass Transfer, Vol. 10, Nauka Press, Minsk, pp. 75–76.
35.
Kopp, I. Z., 1974, “Investigation of Various Conditions on Heat Transfer Surfaces With Liquid-Metal Boiling,” Proc. of Nat. Conf. of Heat Transfer and Hydrodynamics, Vol. 3, Nauka Press, Leningrad, pp. 4–7.
36.
Kopp, I. Z., 1976, “Experimental Investigations Various Types of Microstructure Surfaces for Boiling Heat Transfer,” Proc. of 5th Nat. Conf. of Heat and Mass Transfer, Vol. III, Nauka Press, Leningrad, pp. 61–68.
37.
Borishansky, V. M., Danilova, G. N., and Kopp, I. Z., 1977, “Requirements for Structure to Heat Transfer Surfaces,” Heat Transfer and Hydrodynamics, Nauka State Publ, Leningrad, pp. 105–115 [English Trans., 1981, Heat Transfer, Soviet Research, 2, pp. 26–36.]
38.
Kopp, I. Z., 1978, “The Role of Solids Particles of Nucleation in Boiling Liquid,” Temperature Rates and Hydrodynamics, Nauka State Publ, Leningrad, pp. 48–54.
39.
Shpilrain, E. E., Jakimovich, K. A., and Kopp, I. Z., 1978, “Experimental Installation for Liquid-Metals Injectors,” Critical Heat Flux, Nauka State Publ, Leningrad, pp. 155–164 (English Trans., 1981, Heat Transfer, Soviet Research, 1, pp. 8–16.)
40.
Kopp, I. Z., 1985, “Dynamics of Temperature Regime of Heat Transfer Surfaces,” Proc. of VII National Conf. of Heat Transfer and Hydrodynamics, Vol. 2, Nauka Press, Leningrad, pp. 92–96.
41.
Gelman
L. I.
, and
Kopp
I. Z.
,
1988
, “
Heat Transfer to Boiling Mercury
,”
Teplophis. Visokich Temp.
,
3
, pp.
258
259
.
42.
Kopp, I. Z., 1988, “Analysis of Number Potential Centers of Nucleation in Real Structure of Heat Transfer Surfaces,” Proc. of the Central Boiler and Turbine Inst, Vol. 91, Trudi CKTI, Leningrad, pp. 64–71.
43.
Kopp, I. Z., 1990, “Capillary Processes in Steam Bubble Generation,” Proc of the 2 Nat Conf of Heat Transfer with Phase Transitions, Vol. 2, Nauka Press, Leningrad, pp. 28–31.
44.
Kopp, I. Z., 1990, “Nucleation of Vapor Bubbles in Real Structure of Heat Transfer Surfaces,” Proc. of VIII Nat Conf. of Heat Transfer and Hydrodynamics, Vol. 2, Nauka Press, Leningrad, pp. 67–69.
45.
Volmer, V., 1939, Kinetik der Phasenbildung, Steinkopf, Dresden.
46.
Frenkel, Y. I., 1975, Kinetic Theory of Fluids (in Russian), Nauka Press, Moscow.
47.
Frenkel, Y. I., 1979, Theory of Metals (in Russian), Nauka Press, Moscow.
48.
Westwater
,
J. W.
,
1979
, “
Development of Extended Surface for Use in Boiling Liquids
,”
AIChE Symp. Ser.
,
69
(
131
), pp.
1
9
.
49.
Tien
,
C. L.
,
1962
, “
A Hidrodinamic Model for Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
5
(
6
), pp.
533
540
.
50.
Bergles
,
A. E.
,
1969
, “
Survey and Evaluation of Techniques to Augment Heat and Mass Transfer
,”
Prog. Heat and Mass Transfer
,
1
, pp.
331
334
.
51.
Knudsen
,
J. G.
, and
Katz
,
D. I.
,
1950
, “
Heat Transfer and Pressure Drop
,”
Chem. Eng. Prog.
,
46
, pp.
490
500
.
52.
Zuber
,
N.
,
1993
, “
Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
6
(
1
), pp.
53
78
.
53.
Labuntsov, D. A., 1963, “Approximate Heat Transfer Theory for Nucleate Boiling,” Akad. Nauk SSSR, Ser. Energetika I Transport, No. 1, pp. 58–69.
54.
Tolubinskii, V. I., 1980, Heat Transfer in Boiling (in Russian), Naukova Dumka Press, Kiev.
55.
Borishanskii
,
V. M.
, and
Zhokhov
,
K. A.
,
1965
, “
Pressure Role in Nucleate Boiling
,”
Atomnaja Energia.
,
18
(
3
), pp.
39
48
.
56.
Skripov, V. P., 1972, Metastable Liquid (in Russian), Nauka Press, Moscow.
57.
Collier, J. G., 1994, Convective Boiling and Condensation, Oxford Univ. Press, Oxford, UK.
58.
Kopp, I. Z., 1994, “Intensification of Heat Exchange at Boiling of a Liquid,” Trudi Pervoj Rossijskoj Konferencii po teploobmenu, 8, Moscow, pp. 117–123.
59.
Kalinin
E. K.
,
Dreitser
G. A.
, and
Kopp
I. Z.
,
1992
, “
Modern Problems of Enhancement of Boiling Heat Transfer
,”
Izv Ross Akad Nauk, Energet.
,
3
, pp.
121
134
.
60.
Kopp, I. Z., and Nosov, V. V., 1997, “Optimization of a Steam Generation Surface Microstructure,” Proc. of Int. Conf. on Compact Heat Exchangers, Snowbird, USA, June, Begell House, New York, pp. 501–505.
61.
The Greenhouse Effect, 1989, Climatic Change and Ecosystems, Wiley, Chichester.
62.
Kanaev, A. A., Ratnikov, E. F., and Kopp, I. Z., 1976, Thermodynamics and the Power Equipment of the Atomic Power Station, Atomizdat Publ, Moscow.
63.
Kanaev, A. A., and Kopp, I. Z., 1968, Liquid Metals Power Installations for Ships and Nuclear Power Installations, Sudostroenije State Publ, Leningrad.
64.
Kanaev, A. A., and Kopp, I. Z., 1973, Non-Water Matter for Power Installations, Mashinostroenije State Publ, Leningrad.
65.
Kanaev, A. A., and Kopp, I. Z., 1975, Closed Cycle Gasturbine for Ships and Power Installations, Mashinostroenije State Publ, Leningrad.
66.
Putilov, K. A., 1971, Thermodynamics (in Russian), Nauka Press, Moscow.
67.
Kompaneec, A. C., 1976, Laws of Statistical Physics (in Russian), Nauka Press, Moscow.
68.
Leontovich, M. A., 1983, Introduction in Thermodynamics (in Russian), Nauka Press, Moscow.
69.
De Broglie, L., 1963, La Physique Nouvelle et les Quanta, Flammarion, Paris.
70.
Chambadal, P. R., 1963, Evolution et Applications du Concept d’Entropie, Dunod, Paris.
71.
Gershuni, G. Z., and Zhukhovitskii, E. M., 1972, Convective Instability of Incompressible Fluid (in Russian), Nauka Press, Moscow.
72.
Bhandari, C. M., and Rowe, D. M., 1988, Thermal Conduction in Semiconductors, Wiley, New York.
73.
Kikoin, I. K., and Kikoin, A. K., 1973, Molecular Physics (in Russian), Nauka Press, Moscow.
74.
Kinan, G., 1963, Thermodynamics (in Russian), Energy State Publ, Leningrad.
75.
Kirillin, V. A., Sichev, V. V., and Sheindlin, A. E., 1974, Thermodynamics (in Russian), Energy State Publ, Moscow.
76.
Fen, D., 1986, Mashine, Energy, Entropie (in Russian), Mir Publ, Moscow.
77.
Fortov
,
B. I.
, and
Bushman
,
A. B.
,
1983
, “
Models of the Equations of the State for Substances
,”
Uspehi Phiz. Nauk
,
140
(
2
), pp.
177
232
.
78.
Chyu
,
M.-C.
, and
Fei
,
J.
,
1991
, “
Enhanced Nucleate Boiling-Geometry Found in Structured Surfaces
,”
Int. J. Heat Mass Transfer
,
34
(
2
), pp.
437
448
.
79.
Kutateladze, S. S., Kanaev, A. A., and Kopp, I. Z., 1967, “Problems of the Capacity Increase of the Binary Power Installations,” Y11 World Power Conf., Preprint No. 28, Moscow.
80.
Kanaev, A. A., Skalkin, F. V., and Kopp, I. Z., 1982, Energy and Environment (in Russian), Energy State Publ, Leningrad.
81.
Li, Z. X., Du, D. X., and Guo, Z. Y., 2000, “Experimental Study on Flow Characteristics of Liquid in Circular Microtubes,” Proc. of Int. Conf. on Heat Transfer and Transport Phenomena in Microscale. Proc. of Symp. on Energy Engineering in the 21st Century, Vol. 2, Banff, Canada, Conference Press, pp. 162–167.
82.
Fukushima, N., and Kasagi, N., 2002, “Turbulent Momentum and Heat Transfer in Ducts of Rombic Cross Section,” Proceedings of the 12th International Heat Transfer Conference, Vol. 2, Grenoble, Aug., pp. 202–217.
83.
Amon Cristina, H., 2002, “Advances in Computational Modeling of Nano-Scale Heat Transfer,” 12th Int. Heat Transfer Conf., Grenoble, France.
84.
Hubka, V., 1984, Theorie Technischer Systeme, Springer-Verlag, Berlin.
85.
Kopp, I. Z., 1990, “Systems Approach to Analysis and Maintenance of Thermal Modes at Designing,” Proc. of the Nat. Conf., Sudostroenije State Publ, Leningrad, pp. 72–76.
86.
Ivanov
,
V. A.
, and
Kopp
,
I. Z.
,
1993
, “
Foundation of the Systems Analysis to Heat Power, 1,” (in Russian
),
Izv VUZ, Energy
,
6
, pp.
1
4
.
87.
Chowdhury, I., and Xu, X., 2002, “Heat Transfer in Femtosecond Laser Ablation of Metal,” 12th Int. Heat Transfer Conf., Vol. 1, Grenoble, France, pp. 459–464.
88.
Faddeev, I. P., and Kopp, I. Z., 1998, Heat Power Installations for Energy Supply and Environment Protection, State Univ Publ, St. Petersburg.
89.
Yegorov, A. D., and Kopp, I. Z., 1996, “Air Aerosol Pollution Data Analysis and Airborne Lidar Measurements,” Proc. of Second Int Airborne Remote Sensing Conference and Exhibition, Vol. 3, Germany.
90.
Kornfeld, M., 1951, Elasticity and Strength of Fluids (in Russian), Nauka Press, Moscow.
91.
Therm-2002: (2002), 7th Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems, IEEE, Piscataway, NJ.
92.
Intel Corp., 2002, Annual Conference, USENIX Association Pub., San Jose.
93.
Kopp
,
I. Z.
,
2001
, “
Heat Transfer in One-Sided Induction Heating Bar in a Liquid
,”
Ind. Heat Eng.
,
3
(
5–6
), pp.
54
59
.
94.
Letokhov
,
V. S.
,
1976
, “
Problems of the Laser Spectroskopy
,”
Uspehi fix. Nauk
(in Russian), Vol.
118
, pp.
136
165
.
95.
Ishay
,
J. S.
,
Pertsis
,
V.
,
Rave
,
E.
et al.
,
2003
,
Phys. Rev. Lett.
,
90
,
218102
218102
.
96.
Kopp, I. Z., 1993, Foundation of the Systems Analysis Applied to Energy and Environment Problems, North-West Politeh Inst Publ, Leningrad.
97.
Kopp, I. Z., 1990, “Systems Analysis of Heat Processes to the Green House Effect,” Trudi Pervoj Rossijskoj Konferencii po teploobmenu, Vol. 9, Moscow Energy Institute, Moscow, pp. 101–107.
98.
Kopp, I. Z., 1996, “Priority Tasks in the Green House Effect International Researches,” Proc. Int. Ecological Congress, Tech. Acad. Publ., Voronezh, pp. 11–17.
99.
Yegorov
A. D.
, and
Kopp
I. Z.
,
1997
, “
Multiposition Lidar Monitoring of Inhomogeneous Air Aerosol Pollution,” Lidar Atmospheric Monitoring
,
Proc. SPIE
,
3104
, pp.
239
241
.
100.
Yegorov, A. D., and Kopp, I. Z., 1998, “International Cooperation in Lidar and Other Optical Studies of Atmospheric Air Aerosol Pollution,” Proc. of 11th World Clean Air Congress, University Press, Durban, pp. 64–67.
101.
Kopp, I. Z., and Yasenski, A. N., 1998, “A Role of Carbon Compounds Emission for Greenhouse Effect,” Proc. of 11th World Clean Air Congress, University Press, Durban, pp. 119–126.
102.
Kopp, I. Z., 1993, “Systems Approach to Analysis of Thermal Impacts on the Environment From Energy Power Plants,” Proc. of 6th Int. Symp. ISTP-6, Seoul, Science Publications, pp. 131–137.
103.
Kerr
R. A.
,
1999
, “
Will the Arctic Ocean Lose All Its Ice?
Science
,
286
, p.
1828
1828
.
104.
Carroll
S. M.
,
Hoffman
M.
, and
Trodden
M.
,
2003
, “
Can the Dark Energy Equation-of-State Parameter w be Less Than −1?
Phys. Rev. D
,
68
.
You do not currently have access to this content.