After some brief history, a mathematical model of a bicycle that has become a benchmark is described. The symbolic equations of motion of the bicycle are given in two forms and the equations are interpreted, with special reference to stability. The mechanics of autostabilization are discussed in detail. The relationship between design and behavior is shown to be heavily speed-dependent and complex. Using optimal linear preview control theory, rider control of the bicycle is studied. It is shown that steering control by an optimal rider, especially at low speeds, is powerful in comparison with a bicycle’s self-steering. This observation leads to the expectation that riders will be insensitive to variations in design, as has been observed in practice. Optimal preview speed control is also demonstrated. Extensions to the basic treatment of bicycle dynamics in the benchmark case are considered so that the modeling includes more realistic representations of tires, frames, and riders. The implications for stability predictions are discussed and it is shown that the moderate-speed behavior is altered little by the elaborations. Rider control theory is applied to the most realistic of the models considered and the results indicate a strong similarity between the benchmark case and the complex one, where they are directly comparable. In the complex case, steering control by rider-lean-torque is feasible and the results indicate that, when this is combined with steer-torque control, it is completely secondary. When only rider-lean-torque control is possible, extended preview is necessary, high-gain control is required, and the controls are relatively complex. Much that is known about the stability and control of bicycles is collected and explained, together with new material relating to modeling accuracy, bicycle design, and rider control.

1.
Meijaard
,
J. P.
,
Papadopoulos
,
J. M.
,
Ruina
,
A.
, and
Schwab
,
A. L.
, 2007, “
Linearized Dynamics Equations for the Balance and Steer of a Bicycle: A Benchmark and Review
,”
Proc. R. Soc. London, Ser. A
0950-1207,
463
, pp.
1955
1982
.
2.
Bourlet
,
C.
, 1899, “
Étude Théoretique sur la Bicyclette
,”
Bull. Soc. Math. France
0037-9484,
27
, pp.
47
67
and 76–96.
3.
Carvallo
,
M. E.
, 1899,
Théorie du Mouvement du Monocycle et de la Bicyclette
,
Gauthier-Villars
,
Paris, France
.
4.
Limebeer
,
D. J. N.
, and
Sharp
,
R. S.
, 2006, “
Bicycles, Motorcycles and Models: Single-Track Vehicle Modeling and Control
,”
IEEE Control Syst. Mag.
0272-1708,
26
(
5
), pp.
34
61
.
5.
Whipple
,
F. J. W.
, 1899, “
The Stability of the Motion of a Bicycle
,”
Q. J. Pure Appl. Math.
,
30
(
120
), pp.
312
321
.
6.
Schwab
,
A. L.
,
Meijaard
,
J. P.
, and
Kooijman
,
J. D. G.
, 2006, “
Experimental Validation of a Model of an Uncontrolled Bicycle
,”
Proceedings of the Third European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering
,
C. A.
Mota-Soares
, ed.,
Lisbon, Portugal
, p.
16
(CD-ROM).
7.
Sharp
,
R. S.
, 2007, “
Optimal Stabilisation and Path-Following Controls for a Bicycle
,”
J. Mech. Eng. Sci.
,
221
(
4
), pp.
415
428
. 0022-2542
8.
Schwab
,
A. L.
,
Meijaard
,
J. P.
, and
Papadopoulos
,
J. M.
, 2004, “
Benchmark Results on the Linearized Equations of Motion of an Uncontrolled Bicycle
,”
Proceedings of the Second Asian Conference on Multibody Dynamics
, pp.
1
9
.
9.
Schwab
,
A. L.
,
Meijaard
,
J. P.
, and
Papadopoulos
,
J. M.
, 2005, “
Benchmark Results on the Linearized Equations of Motion of an Uncontrolled Bicycle
,”
Korean Society of Mechanical Engineers, International Journal of Mechanical Science and Technology
,
19
(
1
), pp.
292
304
.
10.
Schwab
,
A. L.
,
Meijaard
,
J. P.
, and
Papadopoulos
,
J. M.
, 2005, “
A Multibody Dynamics Benchmark on the Equations of Motion of an Uncontrolled Bicycle
,”
Proceedings of the ENOC-2005
,
Eindhoven
, pp.
511
521
.
11.
Sharp
,
R. S.
, 1971, “
The Stability and Control of Motorcycles
,”
J. Mech. Eng. Sci.
0022-2542,
13
(
5
), pp.
316
329
.
12.
Limebeer
,
D. J. N.
,
Sharp
,
R. S.
, and
Evangelou
,
S.
, 2001, “
The Stability of Motorcycles Under Acceleration and Braking
,”
J. Mech. Eng. Sci.
,
215
(
C9
), pp.
1095
1109
. 0022-2542
13.
Meijaard
,
J. P.
, and
Schwab
,
A. L.
, 2006, “
Linearised Equations for an Extended Bicycle Model
,”
Proceedings of the Third European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering
,
C. A.
Mota-Soares
, ed.,
Lisbon, Portugal
, p.
18
(CD-ROM).
14.
Desoer
,
C. A.
, 1969, “
Slowly Varying System ẋ=a(t)x
,”
IEEE Trans. Autom. Control
0018-9286,
12
(
6
), pp.
780
781
.
15.
Schwab
,
A. L.
,
Meijaard
,
J. P.
, and
Kooijman
,
J. D. G.
, 2007, “
Some Recent Developments in Bicycle Dynamics
,”
Proceedings of the 12th IFToMM World Congress
,
Besançon, France
, pp.
1
6
.
16.
Mitiguy
,
P. C.
, and
Reckdahl
,
K. J.
, 1998, “
The Definition of Product of Inertia
,” Working Model Technical Paper.
17.
Schiehlen
,
W. O.
, 1997, “
Multibody System Dynamics: Roots and Perspectives
,”
Multibody Syst. Dyn.
1384-5640,
1
(
2
), pp.
149
188
.
18.
Langhaar
,
H. L.
, 1951,
Dimensional Analysis and Theory of Models
,
Wiley
,
New York
.
19.
Juden
,
C.
, 1988, “
Cycling Science
,”
Cycletouring
, June/July, pp.
208
209
. 0031-9228
20.
Jones
,
D. E. H.
, 1970, “
The Stability of the Bicycle
,”
Phys. Today
,
23
(
4
), pp.
34
40
. 0031-9228
21.
Sharp
,
R. S.
, and
Alstead
,
C. J.
, 1980, “
The Influence of Structural Flexibilities on the Straight Running Stability of Motorcycles
,”
Veh. Syst. Dyn.
0042-3114,
9
(
6
), pp.
327
357
.
22.
Pacejka
,
H. B.
, 2002,
Tyre and Vehicle Dynamics
,
Butterworth-Heinemann
,
Oxford
.
23.
Fajans
,
J.
, 2000, “
Steering in Bicycles and Motorcycles
,”
Am. J. Phys.
0002-9505,
68
(
7
), pp.
654
659
.
24.
Cossalter
,
V.
, 2002,
Motorcycle Dynamics
,
Race Dynamics
,
Greendale, WI
.
25.
Åström
,
K. J.
,
Klein
,
R. E.
, and
Lennartsson
,
A.
, 2005, “
Bicycle Dynamics and Control
,”
IEEE Control Syst. Mag.
0272-1708,
25
(
4
), pp.
26
47
.
26.
Sharp
,
A.
, 1977,
Bicycles and Tricycles: A Classic Treatise on Their Design and Construction: Reprint of Longman
, 1896 ed.,
Dover
,
Mineola, NY
.
27.
Gurney
,
K.
, 1997,
Introduction to Neural Networks
,
Routledge
,
New York
.
28.
Sutton
,
R. S.
, and
Barto
,
A. G.
, 1998,
Reinforcement Learning: An Introduction
,
MIT
,
Cambridge, MA
.
29.
Tomizuka
,
M.
, and
Whitney
,
D. E.
, 1975, “
Optimal Discrete Finite Preview Problems (Why and How is Future Information Important?)
,”
ASME J. Dyn. Syst., Meas., Control
,
97
(
4
), pp.
319
325
. 0022-0434
30.
Tomizuka
,
M.
, 1976, “
Optimal Linear Preview Control With Application to Vehicle Suspension—Revisited
,”
ASME J. Dyn. Syst., Meas., Control
,
98
(
3
), pp.
309
315
. 0022-0434
31.
Tomizuka
,
M.
, and
Rosenthal
,
D. E.
, 1979, “
On the Optimal Digital State Vector Feedback Controller With Integral and Preview Actions
,”
ASME J. Dyn. Syst., Meas., Control
,
101
(
2
), pp.
172
178
. 0022-0434
32.
Louam
,
N.
,
Wilson
,
D. A.
, and
Sharp
,
R. S.
, 1988, “
Optimal Control of a Vehicle Suspension Incorporating the Time Delay Between Front and Rear Wheel Inputs
,”
Veh. Syst. Dyn.
,
17
(
6
), pp.
317
336
. 0042-3114
33.
Louam
,
N.
,
Wilson
,
D. A.
, and
Sharp
,
R. S.
, 1992, “
Optimisation and Performance Enhancement of Limited Bandwidth Active Suspensions for Automobiles Under Preview of the Road
,”
Veh. Syst. Dyn.
0042-3114,
21
(
1
), pp.
39
63
.
34.
Prokop
,
G.
, and
Sharp
,
R. S.
, 1995, “
Performance Enhancement of Limited Bandwidth Active Automotive Suspensions by Road Preview
,”
IEE Proc.: Control Theory Appl.
1350-2379,
142
(
2
), pp.
140
148
.
35.
Sharp
,
R. S.
, and
Valtetsiotis
,
V.
, 2001, “
Optimal Preview Car Steering Control
,
ICTAM Selected Papers From 20th International Congress
(
Supplement to Vehicle System Dynamics
Vol.
35
),
P.
Lugner
and
K.
Hedrick
, eds.,
Swets and Zeitlinger
,
Lisse
, pp.
101
117
.
36.
Sharp
,
R. S.
, 2005, “
Driver Steering Control and a New Perspective on Car Handling Qualities
,”
J. Mech. Eng. Sci.
,
219
(
C8
), pp.
1041
1051
. 0022-2542
37.
Sharp
,
R. S.
, 2006, “
Optimal Linear Time-Invariant Preview Steering Control for Motorcycles
,”
The Dynamics of Vehicles on Roads and on Railway Tracks
(
Supplement to Vehicle System Dynamics
Vol.
44
),
S.
Bruni
and
G. R. M.
Mastinu
, eds.,
Taylor & Francis
,
London
, pp.
329
340
.
38.
Sharp
,
R. S.
, 2007, “
Application of Optimal Preview Control to Speed Tracking of Road Vehicles
,”
J. Mech. Eng. Sci.
,
221
(
12
), pp.
1571
1578
. 0022-2542
39.
Sharp
,
R. S.
, 2007, “
Motorcycle Steering Control by Road Preview
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
129
(
4
), pp.
373
381
.
40.
Anderson
,
B. D. O.
, and
Moore
,
J. B.
, 1989,
Optimal Control: Linear Quadratic Methods
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
41.
Doebelin
,
E. O.
, 1985,
Control System Principles and Design
,
Wiley
,
New York
.
42.
Sharp
,
R. S.
, 1976, “
The Stability of Motorcycles in Acceleration and Deceleration
,”
Proceedings of the I Mech E Conference on Braking of Road Vehicles
,
MEP
,
London
, pp.
45
50
.
43.
Eaton
,
D. J.
, 1973, “
Lateral Dynamics of the Uncontrolled Motorcycle
,”
Proceedings of the Second International Congress on Automotive Safety
,
San Francisco, CA
.
44.
Sharp
,
R. S.
, 1994, “
Vibrational Modes of Motorcycles and Their Design Parameter Sensitivities
,”
Vehicle NVH and Refinement
,
MEP
,
London
, pp.
107
121
.
45.
Segel
,
L.
, 1993, “
An Overview of Developments in Road-Vehicle Dynamics: Past, Present and Future
,”
Vehicle Ride and Handling
,
MEP
,
Bury St Edmunds
, pp.
1
12
.
46.
Roland
,
R. D.
, 1973, “
Computer Simulation of Bicycle Dynamics
,”
Proceedings of the ASME Symposium Mechanics and Sport
,
J. L.
Bleustein
, ed., pp.
35
83
.
47.
Pacejka
,
H. B.
, and
Sharp
,
R. S.
, 1991, “
Shear Force Development by Pneumatic Tyres in Steady State Conditions: A Review of Modelling Aspects
,”
Veh. Syst. Dyn.
0042-3114,
20
(
3-4
), pp.
121
176
.
48.
Spierings
,
P. T. J.
, 1981, “
The Effects of Lateral Front Fork Flexibility on the Vibrational Modes of Straight-Running Single-Track Vehicles
,”
Veh. Syst. Dyn.
0042-3114,
10
(
1
), pp.
21
35
.
49.
Sharp
,
R. S.
, 1985, “
The Lateral Dynamics of Motorcycles and Bicycles
,”
Veh. Syst. Dyn.
,
14
(
4–6
), pp.
265
283
. 0042-3114
50.
Sharp
,
R. S.
, 2001, “
Stability, Control and Steering Responses of Motorcycles
,”
Veh. Syst. Dyn.
0042-3114,
35
(
4-5
), pp.
291
318
.
51.
Sharp
,
R. S.
,
Evangelou
,
S.
, and
Limebeer
,
D. J. N.
, 2004, “
Advances in the Modelling of Motorcycle Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
12
(
3
), pp.
251
283
.
52.
Nishimi
,
T.
,
Aoki
,
A.
, and
Katayama
,
T.
, 1985, “
Analysis of Straight Running Stability of Motorcycles
,”
Proceedings of the Tenth International Technical Conference on Experimental Safety Vehicles
,
Oxford
,
New York
, pp.
1080
1094
.
You do not currently have access to this content.