The anisotropy of composite plates often poses difficulties for stress field analysis in the presence of notches. The most common methods for these analyses are: (i) analytical means (AM), (ii) finite element analysis (FEA), and (iii) semi-analytical means (SAM). In industry, FEA has been especially popular for the determination of stresses in small to medium size parts but can require a considerable amount of computing power and time. For faster analyses, one can use AM. The available solutions for a given problem, however, can be quite limited. Additionally, AM implemented in commercial computer software are scarce and difficult to find. Due to this, these methods are not widespread and SAM were proposed. SAM combine the (easy) implementation of complex problems from FEA and the computational efficiency from AM to reduce the difficulty on mathematical operation and increase computational speed with respect to FEA. AM, however, are still the fastest and most accurate way to determine the stress field in a given problem. Complex problems, however, e.g., finite width plates with multiple loaded/unloaded notches, require a significant amount of mathematical involvement which quickly discourages, even seasoned, scientists, and engineers. To encourage the use of AM, this paper gives a brief review of the mathematical basis of AM followed by a historic perspective on the expansions originating from this mathematical basis. Specifically the case of a two-dimensional anisotropic plate with unloaded cut-outs subjected to in-plane static load is presented.

References

1.
Zienkiewicz
,
O.
, and
Taylor
,
R.
,
2000
,
The Finite Element Method
, 5th ed.,
Butterworth-Heinemann
,
Oxford
, UK.
2.
Lekhnitskii
,
S.
,
1968
,
Anisotropic Plates
,
Routledge
, Gordon and Breach Science, New York.
3.
Savin
,
G.
,
1961
,
Stress Concentration Around Holes
,
Pergamon Press
,
London
UK.
4.
Shen
,
H.
,
Schiavone
,
P.
,
Ru
,
C.
, and
Mioduchowski
,
A.
,
2000
, “
An Elliptic Inclusion With Imperfect Interface in Anti-Plane Shear
,”
Int. J. Solids Struct.
,
37
(
33
), pp.
4557
4575
.10.1016/S0020-7683(99)00174-2
5.
Chaudhuri
,
R. A.
, and
Seide
,
P.
,
1987
, “
An Approximate Semi-Analytical Method for Prediction of Interlaminar Shear Stresses in an Arbitrarily Laminated Thick Plate
,”
Comput. Struct.
,
25
(
4
), pp.
627
636
.10.1016/0045-7949(87)90270-7
6.
Liu
,
G.
, and
Lam
,
K.
,
1994
, “
Characterization of a Horizontal Crack in Anisotropic Laminated Plates
,”
Int. J. Solids Struct.
,
31
(
21
), pp.
2965
2977
.10.1016/0020-7683(94)90063-9
7.
Liu
,
G. R.
,
2002
, “
A Combined Finite Element/Strip Element Method for Analyzing Elastic Wave Scattering by Cracks and Inclusions in Laminates
,”
Comput. Mech.
,
28
(
1
), pp.
76
82
.10.1007/s00466-001-0272-0
8.
Wang
,
Y.
,
Lam
,
K.
, and
Liu
,
G.
,
1998
, “
Wave Scattering of Interior Vertical Crack in Plates and the Detection of the Crack
,”
Eng. Fract. Mech.
,
59
(
1
), pp.
1
16
.10.1016/S0013-7944(97)00121-5
9.
Muskhelishvili
,
N.
,
1953
,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Springer
, Noordhoff International, Leyden, The Netherlands.
10.
Eshelby
,
J. D.
,
Read
,
W. T.
, and
Shockley
,
W.
,
1953
, “
Anisotropic Elasticity With Applications to Dislocation Theory
,”
Acta Metall.
,
1
(
3
), pp.
251
259
.10.1016/0001-6160(53)90099-6
11.
Stroh
,
A.
,
1958
, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
,
3
(
30
), pp.
625
646
.10.1080/14786435808565804
12.
Stroh
,
A.
,
1962
, “
Steady State Problems in Anisotropic Elasticity
,”
J. Math. Phys.
,
41
(
2
), pp.
77
103
.
13.
Ting
,
T.
,
1996
,
Anisotropic Elasticity: Theory and Applications
,
Oxford University Press
,
Oxford
, UK.
14.
Hwu
,
C.
,
2010
,
Anisotropic Elastic Plates
,
Springer
,
Boston, MA
.
15.
Egan
,
B.
,
McCarthy
,
C.
,
McCarthy
,
M.
, and
Frizzell
,
R.
,
2012
, “
Stress Analysis of Single-Bolt, Single-Lap, Countersunk Composite Joints With Variable Bolt-Hole Clearance
,”
Compos. Struct.
,
94
(
3
), pp.
1038
1051
.10.1016/j.compstruct.2011.10.004
16.
Guo
,
S.
,
Morishima
,
R.
,
Zhang
,
X.
, and
Mills
,
A.
,
2009
, “
Cutout Shape and Reinforcement Design for Composite C-Section Beams Under Shear Load
,”
Compos. Struct.
,
88
(
2
), pp.
179
187
.10.1016/j.compstruct.2008.03.001
17.
Akbarov
,
S.
,
Yahnioglu
,
N.
, and
Yesil
,
U.
,
2012
, “
A 3D FEM Analysis of Stress Concentrations Around Two Neighboring Cylindrical Holes in a Prestressed Rectangular Composite Plate Under Bending
,”
Mech. Compos. Mater.
,
48
(
5
), pp.
499
510
.10.1007/s11029-012-9295-1
18.
Xing
,
L.
,
Zhidong
,
G.
,
Zengshan
,
L.
, and
Lu
,
L.
,
2014
, “
A New Stress-Based Multi-Scale Failure Criterion of Composites and Its Validation in Open Hole Tension Tests
,”
Chin. J. Aeronaut.
, (in press).
19.
Daghia
,
F.
, and
Ladeveze
,
P.
,
2013
, “
Identification and Validation of an Enhanced Mesomodel for Laminated Composites Within the WWFE-III
,”
J. Compos. Mater.
,
47
(
20–21
), pp.
2675
2693
.10.1177/0021998313494095
20.
Huynh
,
D.
, and
Belytschko
,
T.
,
2009
, “
The Extended Finite Element Method for Fracture in Composite Materials
,”
J. Numer. Methods
,
77
, pp.
214
239
.10.1002/nme.2411
21.
Wang
,
Z.
,
Zhou
,
S.
,
Zhang
,
J.
,
Wu
,
X.
, and
Zhou
,
L.
,
2012
, “
Progressive Failure Analysis of Bolted Single-Lap Composite Joint Based on Extended Finite Element Method
,”
Mater. Des.
,
37
, pp.
582
588
.10.1016/j.matdes.2011.08.039
22.
de Jong
,
T.
,
1981
, “
Stresses Around Rectangular Holes in Orthotropic Plates
,”
J. Compos. Mater.
,
15
, pp.
311
328
.
23.
Rajaiah
,
K.
, and
Naik
,
N.
,
1983
, “
Quasi-Rectangular Holes With Minimum Stress Concentration in Orthotropic Plates
,”
J. Reinf. Plast. Compos.
,
2
(
3
), pp.
164
177
.10.1177/073168448300200303
24.
Grayley
,
M.
,
1985
, Elastic Stress and Strain Distributions Around Circular Holes in Infinite Plates of Orthotropic Material (Applicable to Fibre Reinforced Composites), ESDU85001, ESDU, London, UK.
25.
Tung
,
T.
,
1987
, “
On Computation of Stresses Around Holes in Anisotropic Plates
,”
J. Compos. Mater.
,
21
(
2
), pp.
100
104
.10.1177/002199838702100201
26.
Lin
,
C.
, and
Ko
,
C.-C.
,
1988
, “
Stress and Strength Analysis of Finite Composite Laminates With Elliptical Holes
,”
J. Compos. Mater.
,
22
(
4
), pp.
373
385
.10.1177/002199838802200405
27.
Xu
,
X.
,
Sun
,
L.
, and
Fan
,
X.
,
1995
, “
Stress Concentration of Finite Composite Laminates With Elliptical Hole
,”
Comput. Struct.
,
57
(
1
), pp.
29
34
.10.1016/0045-7949(94)00588-T
28.
Gerhardt
,
T.
,
1984
, “
A Hybrid/Finite Element Approach for Stress Analysis of Notched Anisotropic Materials
,”
ASME J. Appl. Mech.
,
51
(
4
), pp.
804
810
.10.1115/1.3167728
29.
Xu
,
X.
,
Sun
,
L.
, and
Fan
,
X.
,
1995
, “
Stress Concentration of Finite Composite Laminates Weakened by Multiple Elliptical Holes
,”
Int. J. Solids Struct.
,
32
(
20
), pp.
3001
3014
.10.1016/0020-7683(94)00084-A
30.
Xu
,
X.
,
Yue
,
T.
, and
Man
,
H.
,
1999
, “
Stress Analysis of Finite Composite Laminate With Multiple Loaded Holes
,”
Int. J. Solids Struct.
,
36
(
6
), pp.
919
931
.10.1016/S0020-7683(97)00343-0
31.
Hufenbach
,
W.
, and
Kroll
,
L.
,
1999
, “
Stress Analysis of Notched Anisotropic Finite Plates Under Mechanical and Hygrothermal Loads
,”
Arch. Appl. Mech.
,
69
, pp.
145
159
.10.1007/s004190050211
32.
Hufenbach
,
W.
,
Gruber
,
B.
,
Gottwald
,
R.
,
Lepper
,
M.
, and
Zhou
,
B.
,
2010
, “
Analytical and Experimental Analysis of Stress Concentration in Notched Multilayered Composites With Finite Outer Boundaries
,”
Mech. Compos. Mater.
,
46
(
5
), pp.
531
538
.10.1007/s11029-010-9169-3
33.
Hufenbach
,
W.
,
Grüber
,
B.
,
Lepper
,
M.
,
Gottwald
,
R.
, and
Zhou
,
B.
,
2012
, “
An Analytical Method for the Determination of Stress and Strain Concentrations in Textile-Reinforced GF/PP Composites With Elliptical Cutout and a Finite Outer Boundary and Its Numerical Verification
,”
Arch. Appl. Mech.
,
83
(
1
), pp.
125
135
.10.1007/s00419-012-0641-5
34.
Daoust
,
J.
, and
Hoa
,
S.
,
1991
, “
An Analytical Solution for Anisotropic Plates Containing Triangular Holes
,”
Compos. Struct.
,
19
(
2
), pp.
107
130
.10.1016/0263-8223(91)90018-T
35.
Ukadgaonker
,
V.
, and
Rao
,
D.
,
1999
, “
Stress Distribution Around Triangular Holes in Anisotropic Plates
,”
Compos. Struct.
,
45
(
3
), pp.
171
183
.10.1016/S0263-8223(99)00024-0
36.
Gao
,
X.-L.
,
1996
, “
A General Solution of an Infinite Elastic Plate With an Elliptic Hole Under Biaxial Loading
,”
Int. J. Pressure Vessels Piping
,
67
(
1
), pp.
95
104
.10.1016/0308-0161(94)00173-1
37.
Whitworth
,
H.
, and
Mahase
,
H.
,
1999
, “
Stress Concentration in Graphite/Epoxy Laminates Containing a Circular Hole
,”
J. Adv. Mater.
,
31
(
4
), pp.
45
51
.
38.
Ukadgaonker
, V
.
, and
Rao
,
D.
,
2000
, “
A General Solution for Stresses Around Holes in Symmetric Laminates Under Inplane Loading
,”
Compos. Struct.
,
49
(
3
), pp.
339
354
.10.1016/S0263-8223(00)00070-2
39.
Ukadgaonker
, V
.
, and
Rao
,
D.
,
2000
, “
A General Solution for Moments Around Holes in Symmetric Laminates
,”
Compos. Struct.
,
49
(
1
), pp.
41
54
.10.1016/S0263-8223(99)00124-5
40.
Ukadgaonker
, V
.
, and
Kakhandki
, V
.
,
2005
, “
Stress Analysis for an Orthotropic Plate With an Irregular Shaped Hole for Different In-Plane Loading Conditions-Part 1
,”
Compos. Struct.
,
70
(
3
), pp.
255
274
.10.1016/j.compstruct.2004.08.032
41.
Batista
,
M.
,
2011
, “
On the Stress Concentration Around a Hole in an Infinite Plate Subject to a Uniform Load at Infinity
,”
Int. J. Mech. Sci.
,
53
(
4
), pp.
254
261
.10.1016/j.ijmecsci.2011.01.006
42.
Rao
,
D.
,
Babu
,
M.
,
Reddy
,
K.
, and
Sunil
,
D.
,
2010
, “
Stress Around Square and Rectangular Cutouts in Symmetric Laminates
,”
Compos. Struct.
,
92
(
12
), pp.
2845
2859
.10.1016/j.compstruct.2010.04.010
43.
Sharma
,
D.
,
2011
, “
Stress Concentration Around Circular/Elliptical/Triangular Cutouts in Infinite Composite Plate
,”
Lect. Notes Eng. Comput. Sci.
,
III
, pp.
6
11
.
44.
Becker
,
W.
,
1993
, “
Complex Method for the Elliptical Hole in an Unsymmetric Laminate
,”
Arch. Appl. Mech.
,
63
(
3
), pp.
159
169
.
45.
Chen
,
P.
, and
Shen
,
Z.
,
2003
, “
Stress Resultants and Moments Around Holes in Unsymmetrical Composite Laminates Subjected to Remote Uniform Loading
,”
Mech. Res. Commun.
,
30
(
1
), pp.
79
86
.10.1016/S0093-6413(02)00353-1
46.
Ukadgaonker
, V
.
, and
Rao
,
D.
,
2000
, “
A General Solution for Stress Resultants and Moments Around Holes in Unsymmetric Laminates
,”
Compos. Struct.
,
49
(
1
), pp.
27
39
.10.1016/S0263-8223(99)00123-3
47.
Xiong
,
Y.
, and
Poon
,
C.
,
1998
, “
Stresses Around a Biaxially Loaded Fastener Hole in a Laminate of Finite Geometry
,”
J. Thermoplast. Compos. Mater.
,
11
(
3
), pp.
261
271
.
48.
Xiong
,
Y.
,
1999
, “
A Complex Variational Approach for Single Loaded/Unloaded Hole in Finite Laminated Plate Under General In-Plane Loads
,”
Sci. Eng. Compos. Mater.
,
8
(
5
), pp.
243
256
.
49.
Grüber
,
B.
,
Hufenbach
,
W.
,
Kroll
,
L.
,
Lepper
,
M.
, and
Zhou
,
B.
,
2007
, “
Stress Concentration Analysis of Fibre-Reinforced Multilayered Composites With Pin-Loaded Holes
,”
Compos. Sci. Technol.
,
67
(
7–8
), pp.
1439
1450
.10.1016/j.compscitech.2006.08.018
50.
Berbinau
,
P.
,
Filiou
,
C.
, and
Soutis
,
C.
,
2001
, “
Stress and Failure Analysis of Composite Laminates With an Inclusion Under Multiaxial Compression-Tension Loading
,”
Appl. Compos. Mater.
,
8
, pp.
307
326
.10.1023/A:1011279721719
51.
Zheng
,
X.
, and
Xu
,
X.
,
1999
, “
Stress Analysis of Finite Composite Laminates With Elliptical Inclusion
,”
Comput. Struct.
,
70
(
3
), pp.
0
4
.10.1016/S0045-7949(98)00149-7
52.
Lin
,
Z.
, and
Xu
,
X.
,
2008
, “
Stress Concentration Analysis of Stiffened Composite Laminates With Multiple Elliptical Holes or Inclusions
,”
Chin. J. Comput. Mech.
,
25
(
3
), pp.
379
391
.
53.
Yang
,
Q.
,
Gao
,
C.-F.
, and
Chen
,
W.
,
2009
, “
Stress Analysis of a Functional Graded Material Plate With a Circular Hole
,”
Arch. Appl. Mech.
,
80
(
8
), pp.
895
907
.10.1007/s00419-009-0349-3
54.
Sburlati
,
R.
,
Atashipour
,
S.
, and
Atashipour
,
S.
,
2014
, “
Reduction of the Stress Concentration Factor in a Homogeneous Panel With Hole by Using a Functionally Graded Layer
,”
Composites, Part B
,
61
, pp.
99
109
.10.1016/j.compositesb.2014.01.036
55.
Sharma
,
D. S.
,
2012
, “
Stress Distribution Around Polygonal Holes
,”
Int. J. Mech. Sci.
,
65
(
1
), pp.
115
124
.10.1016/j.ijmecsci.2012.09.009
56.
Sharma
,
D. S.
,
2014
, “
Moment Distribution Around Polygonal Holes in Infinite Plate
,”
Int. J. Mech. Sci.
,
78
, pp.
177
182
.10.1016/j.ijmecsci.2013.10.021
57.
Sevenois
,
R
.,
2013
, “
Stress Analysis and Failure Prediction for Orthotropic Plates With Holes
,” M.S. thesis, Delft University of Technology, Delft, The Netherlands.
58.
Ting
,
T.
,
1982
, “
Effects of Change of Reference Coordinates on the Stress Analyses of Anisotropic Elastic Materials
,”
Int. J. Solids Struct.
,
18
(
2
), pp.
139
152
.10.1016/0020-7683(82)90022-1
59.
Ting
,
T.
,
1984
, “
The Wedge Subjected to Tractions: A Paradox Re-Examined
,”
J. Elasticity
,
14
(
3
), pp.
235
247
.10.1007/BF00041136
60.
Ting
,
T.
,
1985
, “
Elastic Wedge Subjected to Antiplane Shear Tractions-A Paradox Explained
,”
Q. J. Mech. Appl. Math.
,
38
(
2
), pp.
245
255
.10.1093/qjmam/38.2.245
61.
Ting
,
T.
, and
Hwu
,
C.
,
1988
, “
Sextic Formalism in Anisotropic Elasticity for Almost Non-Semisimple Matrix N
,”
Int. J. Solids Struct.
,
24
(
1
), pp.
65
76
.10.1016/0020-7683(88)90099-6
62.
Ting
,
T.
,
1992
, “
Barnett-Lothe Tensors and Their Associated Tensors for Monoclinic Materials With the Symmetry Plane at x3 = 0
,”
J. Elasticity
,
27
(
2
), pp.
143
165
.10.1007/BF00041647
63.
Ting
,
T.
, and
Minzhong
,
W.
,
1992
, “
Generalized Stroh Formalism for Anisotropic Elasticity for General Boundary Conditions
,”
Acta Mech. Sin.
,
8
(
3
), pp.
193
207
.10.1007/BF02489242
64.
Ting
,
T.
,
1998
, “
Symmetric Representation of Stress and Strain in the Stroh Formalism and Physical Meaning of the Tensors L, S, L (θ), and S(θ)
,”
J. Elasticity
,
50
(
1
), pp.
91
96
.10.1023/A:1007485720345
65.
Ting
,
T.
,
1999
, “
A Modified Lekhnitskii Formalism Àla Stroh for Anisotropic Elasticity and Classifications of the 6 × 6 Matrix N
,”
Proc. R. Soc. A
,
455
(
1981
), pp.
69
89
.10.1098/rspa.1999.0303
66.
Ting
,
T.
,
2000
, “
Recent Developments in Anisotropic Elasticity
,”
Int. J. Solids Struct.
,
37
(
1–2
), pp.
401
409
.10.1016/S0020-7683(99)00102-X
67.
Ting
,
T.
,
2006
, “
Transverse Waves in Anisotropic Elastic Materials
,”
Wave Motion
,
44
(
2
), pp.
107
119
.10.1016/j.wavemoti.2006.08.003
68.
Ting
,
T.
,
2009
, “
Existence of One-Component Rayleigh Waves, Stoneley Waves, Love waves, Slip waves and One-Component Waves in a Plate or Layered Plate
,”
J. Mech. Mater. Struct.
,
4
(
4
), pp.
631
647
.10.2140/jomms.2009.4.631
69.
Ting
,
T.
,
2011
, “
Surface Waves in an Exponentially Graded, General Anisotropic Elastic Material Under the Influence of Gravity
,”
Wave Motion
,
48
(
4
), pp.
335
344
.10.1016/j.wavemoti.2010.12.001
70.
Hwu
,
C.
, and
Ting
,
T.
,
1989
, “
Two-Dimensional Problems of the Anisotropic Elastic Solid With an Elliptic Inclusion
,”
Q. J. Mech. Appl. Math.
,
42
(
4
), pp.
553
572
.10.1093/qjmam/42.4.553
71.
Hwu
,
C.
,
1990
, “
Anisotropic Plates With Various Openings Under Uniform Loading or Pure Bending
,”
ASME J. Appl. Mech.
,
57
(
3
), pp.
700
706
.10.1115/1.2897080
72.
Hwu
,
C.
,
1990
, “
Thermal Stresses in an Anisotropic Plate Disturbed by an Insulated Elliptic Hole or Crack
,”
ASME J. Appl. Mech.
,
57
, pp.
916
922
.10.1115/1.2897661
73.
Hwu
,
C.
, and
Wang
,
W.-Y.
,
1992
, “
Various Rigid Inclusions in Anisotropic Media
,”
J. Chin. Soc. Mech. Eng.
,
13
(
1
), pp.
10
16
.
74.
Hwu
,
C.
, and
Yen
,
W.
,
1993
, “
On the Anisotropic Elastic Inclusions in Plane Elastostatics
,”
ASME J. Appl. Mech.
,
60
(
3
), pp.
626
632
.10.1115/1.2900850
75.
Hwu
,
C.
, and
Liao
,
C.
,
1994
, “
A Special Boundary Element for the Problems of Multi-Holes, Cracks and Inclusions
,”
Comput. Struct.
,
51
(
1
), pp.
23
31
.10.1016/0045-7949(94)90032-9
76.
Hwu
,
C.
,
2003
, “
Stroh-Like Formalism for the Coupled Stretching-Bending Analysis of Composite Laminates
,”
Int. J. Solids Struct.
,
40
(
13–14
), pp.
3681
3705
.10.1016/S0020-7683(03)00161-6
77.
Hwu
,
C.
,
2003
, “
Stroh-Like Complex Variable Formalism for the Bending Theory of Anisotropic Plates
,”
ASME J. Appl. Mech.
,
70
(
5
), pp.
696
707
.10.1115/1.1600474
78.
Hwu
,
C.
,
2003
, “
Stroh Formalism and Its Extensions to Coupled Inplane-Bending Problems
,”
J. Mech.
,
19
(
1
), pp.
41
53
.
79.
Hwu
,
C.
,
2012
, “
Boundary Element Formulation for the Coupled Stretching-Bending Analysis of Thin Laminated Plates
,”
Eng. Anal. Boundary Elem.
,
36
(
6
), pp.
1027
1039
.10.1016/j.enganabound.2011.12.018
80.
Gao
,
H.
,
1992
, “
Stress Analysis of Holes in Anisotropic Elastic Solids: Conformal Mapping and Boundary Perturbation
,”
Q. J. Mech. Appl. Math.
,
45
(
2
), pp.
149
168
.10.1093/qjmam/45.2.149
81.
Caviglia
,
G.
, and
Morro
,
A.
,
2000
, “
Wave Propagation in Multilayered Anisotropic Solids
,”
Int. J. Eng. Sci.
,
38
(
8
), pp.
847
863
.10.1016/S0020-7225(99)00062-2
82.
Wang
,
L.
,
2004
, “
Space of Degeneracy in the Stroh Eigensystem and Surface Waves in Transversely Isotropic Elastic Media
,”
Wave Motion
,
40
(
2
), pp.
173
190
.10.1016/j.wavemoti.2004.03.001
83.
Wu
,
X.-F.
, and
Dzenis
,
Y.
,
2005
, “
Antiplane Surface Acoustic Waves Propagating in Elastic Half-Space Coated With an Anisotropic Laminate
,”
Compos. Sci. Technol.
,
65
(
11–12
), pp.
1761
1768
.10.1016/j.compscitech.2005.03.003
84.
Tanuma
,
K.
, and
Man
,
C.-S.
,
2007
, “
Perturbation of Rayleigh Waves in Anisotropic Media
,”
J. Phys.: Conf. Ser.
,
73
(
1
), pp.
21
37
.
85.
Chung
,
M.
, and
Ting
,
T.
,
1996
, “
Piezoelectric Solid With an Elliptic Inclusion or Hole
,”
Int. J. Solids Struct.
,
33
(
23
), pp.
3343
3361
.10.1016/0020-7683(95)00189-1
86.
Liou
,
J.
, and
Sung
,
J.
,
2007
, “
On the Generalized Barnett–Lothe Tensors for Monoclinic Piezoelectric Materials
,”
Int. J. Solids Struct.
,
44
(
16
), pp.
5208
5221
.10.1016/j.ijsolstr.2006.12.031
87.
Ikeda
,
T.
,
Hirai
,
H.
,
Abe
,
M.
,
Chiba
,
M.
, and
Miyazaki
,
N.
,
2011
, “
Stress Intensity Factor Analysis of an Interfacial Corner Between Piezoelectric Bimaterials in a Two Dimensional Structure Using the H-Integral Method
,”
ASME
Paper No. IPACK2011-52073, Portland, OR, July 6–8. 10.1115/IPACK2011-52073
88.
Konish
,
H.
, and
Whitney
,
J.
,
1975
, “
Approximate Stresses in an Orthotropic Plate Containing a Circular Hole
,”
J. Compos. Mater.
,
9
(
2
), pp.
157
166
.10.1177/002199837500900206
89.
Pilkey
,
W.
, and
Pilkey
,
D.
,
2008
,
Petersons' S Stress Concentration Factors
, 3rd ed.,
John Wiley & Sons
,
Hoboken
, NJ.
90.
Tan
,
S.
,
1994
, Stress Concentrations in Laminated Composite, Technomic, Lancaster, PA.
91.
Tan
,
S.
,
1988
, “
Finite-Width Correction Factors for Anisotropic Plate Containing a Central Opening
,”
J. Compos. Mater.
,
22
(
11
), pp.
1080
1097
.10.1177/002199838802201105
92.
Tan
,
S.
, and
Kim
,
R.
,
1990
, “
Strain and Stress Concentrations in Composite Laminates Containing a Hole
,”
Exp. Mech.
,
30
(
4
), pp.
345
351
.10.1007/BF02321502
93.
Zhang
,
C.
,
Hoa
,
S.
, and
Ganesan
,
R.
,
1998
, “
Approximate Solutions for Stresses Around Pin-Loaded Holes in Symmetric Composite Laminates
,”
J. Reinf. Plast. Compos.
,
17
(
9
), pp.
800
818
.
94.
Soutis
,
C.
, and
Filiou
,
C.
,
1998
, “
Stress Distributions Around Holes in Composite Laminates Subjected to Biaxial Loading
,”
Appl. Compos. Mater.
,
5
(
365–378
), pp.
365
378
.10.1023/A:1008837715030
95.
Russo
,
A.
, and
Zuccarello
,
B.
,
2007
, “
An Accurate Method to Predict the Stress Concentration in Composite Laminates With a Circular Hole Under Tensile Loading
,”
Mech. Compos. Mater.
,
43
(
4
), pp.
359
376
.10.1007/s11029-007-0033-z
96.
Tarn
,
J.-Q.
,
2002
, “
A State Space Formalism for Anisotropic Elasticity. Part I: Rectilinear Anisotropy
,”
Int. J. Solids Struct.
,
39
(
20
), pp.
5143
5155
.10.1016/S0020-7683(02)00411-0
97.
Ting
,
T.
,
2002
, “
A Unified Formalism for Elastostatics or Steady State Motion of Compressible or Incompressible Anisotropic Elastic Materials
,”
Int. J. Solids Struct.
,
39
(
21–22
), pp.
5427
5445
.10.1016/S0020-7683(02)00357-8
You do not currently have access to this content.