In this expository article, a simple concise treatment of Lagrange's prescription for constraint forces and constraint moments in the dynamics of rigid bodies is presented. The treatment is suited to both Newton–Euler and Lagrangian treatments of rigid body dynamics and is illuminated with a range of examples from classical mechanics and orthopedic biomechanics.
Issue Section:
Tutorial
References
1.
Lagrange
, J. L.
, 1997
, Analytical Mechanics (Boston Studies in the Philosophy of Science)
, Vol. 191
, Kluwer Academic Publishers Group
, Dordrecht
[Translated from the 1811 French original, with an introduction and edited by A.
, Boissonnade
, and V. N.
, Vagliente
, and with a preface by C. G.
, Fraser
].2.
Baruh
, H.
, 1999
, Analytical Dynamics
, McGraw-Hill
, Boston
.3.
Papastavridis
, J. G.
, 2002
, Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems; for Engineers, Physicists, and Mathematicians
, Oxford University Press
, Oxford
.4.
Synge
, J. L.
, and Griffith
, B. A.
, 1959
, Principles of Mechanics
, 3rd ed., McGraw-Hill
, New York
.5.
Kane
, T. R.
, Likins
, P. W.
, and Levinson
, D. A.
, 1983
, Spacecraft Dynamics
, McGraw-Hill
, New York
.6.
Papastavridis
, J. G.
, 1998
, “Panoramic Overview of the Principles and Equations of Motion of Advanced Engineering Dynamics
,” ASME Appl. Mech. Rev.
, 51
(4
), pp. 239
–265
.10.1115/1.30990037.
Udwadia
, F. E.
, and Kalaba
, R. E.
, 1996
, Analytical Dynamics
, Cambridge University Press
, Cambridge
.8.
Gantmacher
, F.
, 1970
, Lectures in Analytical Mechanics
, McGraw-Hill
, Moscow
[Translated from the Russian by G. Yankovsky].9.
Planck
, M.
, 1949
, Introduction to Theoretical Physics
(General Mechanics), Vol. 1
, The McMillan Company
, New York
[Translated from the German by Henry L. Brose].10.
Huston
, R. L.
, 1990
, Multibody Dynamics
, Butterworth-Heinemann
, Boston
.11.
O'Reilly
, O. M.
, 2008
, Intermediate Engineering Dynamics: A Unified Approach to Newton-Euler and Lagrangian Mechanics
, Cambridge University Press
, New York
.12.
Shabana
, A. A.
, 2001
, Computational Dynamics
, 2nd ed., Wiley-Interscience
, New York
.13.
Casey
, J.
, and O'Reilly
, O. M.
, 2006
, “Geometrical Derivation of Lagrange's Equations for a System of Rigid Bodies
,” Math. Mech. Solids
, 11
(4
), pp. 401
–422
.10.1177/108128650504413714.
O'Reilly
, O. M.
, 2007
, “The Dual Euler Basis: Constraints, Potentials, and Lagrange's Equations in Rigid Body Dynamics
,” ASME J. Appl. Mech.
, 74
(2
), pp. 256
–258
.10.1115/1.219023115.
O'Reilly
, O. M.
, and Srinivasa
, A. R.
, 2002
, “On Potential Energies and Constraints in the Dynamics of Rigid Bodies and Particles
,” Math. Prob. Eng.
, 8
(3
), pp. 169
–180
.10.1080/1024123021528616.
Shuster
, M. D.
, 1993
, “A Survey of Attitude Representations
,” J. Astronaut. Sci.
, 41
(4
), pp. 439
–517
.17.
Desroches
, G.
, Chèze
, L.
, and Dumas
, R.
, 2010
, “Expression of Joint Moment in the Joint Coordinate System
,” ASME J. Biomech. Eng.
, 132
(11
), p. 114503
.10.1115/1.400253718.
O'Reilly
, O. M.
, Sena
, M.
, Feeley
, B. T.
, and Lotz
, J. C.
, 2013
, “On Representations for Joint Moments Using a Joint Coordinate System
,” ASME J. Biomech. Eng.
, 135
(11
), p. 114504
.10.1115/1.402532719.
O'Reilly
, O. M.
, and Srinivasa
, A. R.
, 2001
, “On a Decomposition of Generalized Constraint Forces
,” Proc. R. Soc., London, Ser. A
, 457
(2010
), pp. 1307
–1313
and 3052.10.1098/rspa.2000.071720.
O'Reilly
, O. M.
, 2010
, Engineering Dynamics: A Primer
, 2nd ed., Springer-Verlag
, New York
.21.
Kessler
, P.
, and O'Reilly
, O. M.
, 2002
, “The Ringing of Euler's Disk
,” Regul. Chaotic Dyn.
, 7
(1
), pp. 49
–60
.10.1070/RD2002v007n01ABEH00019522.
Le Saux
, C.
, Leine
, R. I.
, and Glocker
, C.
, 2005
, “Dynamics of a Rolling Disk in the Presence of Dry Friction
,” J. Nonlinear Sci.
, 15
(1
), pp. 27
–61
.10.1007/s00332-004-0655-423.
Leine
, R.
, 2009
, “Experimental and Theoretical Investigation of the Energy Dissipation of a Rolling Disk During Its Final Stage of Motion
,” Arch. Appl. Mech.
, 79
(11
), pp. 1063
–1082
.10.1007/s00419-008-0278-624.
Casey
, J.
, 1995
, “On the Advantages of a Geometrical Viewpoint in the Derivation of Lagrange's Equations for a Rigid Continuum
,” Z. Angew. Math. Phys.
, 46
(Special Issue 1995
), pp. S805
–S847
.10.1007/BF0091788225.
Fox
, E.
, 1967
, Mechanics
, Harper & Row
, New York, Evanston, London
.26.
Dankowicz
, H.
, 1998
, Mechanics Problems, and Their Solutions
, Royal Institute of Technology (KTH)
, Stockholm, Sweden
.27.
Fried
, E.
, 2010
, “New Insights Into the Classical Mechanics of Particle Systems
,” Discrete Continuous Dyn. Syst.
, 28
(4
), pp. 1469
–1504
.10.3934/dcds.2010.28.146928.
Moon
, F. C.
, 2008
, Applied Dynamics With Applications to Multibody and Mechatronic Systems
, 2nd ed., Wiley-VCH
, Weinheim, Germany
.29.
Noll
, W.
, 2004
, “On Material-Frame Indifference
,” Five Contributions to Natural Philosophy
, Department of Mathematics, Carnegie-Mellon University
, Pittsburgh, PA
, Chap. 2, pp. 13
–22
.30.
Grood
, E. S.
, and Suntay
, W. J.
, 1983
, “A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,” ASME J. Biomech. Eng.
, 105
(2
), pp. 136
–144
.10.1115/1.313839731.
Gauss
, C. F.
, 2009
, “Üher ein neues allgemeines Grundgesetz der Mechanik
,” Crelle J. Reine Angew. Math.
, 1829
(4
), pp. 232
–235
.10.1515/crll.1829.4.23232.
Cardin
, F.
, and Favretti
, M.
, 1996
, “On Nonholonomic and Vakonomic Dynamics of Mechanical Systems With Nonintegrable Constraints
,” J. Geom. Phys.
, 18
(4
), pp. 295
–325
.10.1016/0393-0440(95)00016-X33.
Lewis
, A. D.
, and Murray
, R. M.
, 1995
, “Variational Principles for Constrained Systems: Theory and Experiment
,” Int. J. Non-Linear Mech.
, 30
(6
), pp. 793
–815
.10.1016/0020-7462(95)00024-0Copyright © 2015 by ASME
You do not currently have access to this content.