Lie-theoretic methods provide an elegant way to formulate many problems in robotics, and the tutorial by Park et al. (2018, “Geometric Algorithms for Robot Dynamics: A Tutorial Review,” ASME Appl. Mech. Rev., 70(1), p. 010803) is simultaneously a complete and concise introduction to these methods as they pertain to robot dynamics. The central reason why Lie groups are a natural mathematical tool for robotics is that rigid-body motions and pose changes can be described as Lie groups, and allow phenomena including robot kinematics and dynamics to be formulated in elegant notation without introducing superfluous coordinates. The emphasis of the tutorial by Park et al. (2018, “Geometric Algorithms for Robot Dynamics: A Tutorial Review,” ASME Appl. Mech. Rev., 70(1), p. 010803) is robot dynamics from a Lie-theoretic point of view. Newton–Euler and Lagrangian formulation of robot dynamics algorithms with O(n) complexity were formulated more than 35 years ago using recurrence relations that use the serial structure of manipulator arms. This was done without using the knowledge of Lie theory. But issues such as why the ω× terms in rigid-body dynamics appear can be more easily understood in the context of this theory. The authors take great efforts to be understandable by nonexperts and present extensive references to the differential-geometric and Lie-group-centric formulations of manipulator dynamics. In the discussion presented here, connections are made to complementary methods that have been developed in other bodies of literature. This includes the multibody dynamics, geometric mechanics, spacecraft dynamics, and polymer physics literature, as well as robotics works that present non-Lie-theoretic formulations in the context of highly parallelizable algorithms.

References

1.
Karger
,
A.
, and
Novák
,
J.
,
1985
,
Space Kinematics and Lie Groups
,
Gordon and Breach Science Publishers
,
New York
.
2.
Absil
,
P.-A.
,
Mahony
,
R.
, and
Sepulchre
,
R.
,
2008
,
Optimization Algorithms on Matrix Manifolds
,
Princeton University Press
,
Princeton, NJ
.
3.
Walker
,
I. D.
,
Choset
,
H.
, and
Chirikjian
,
G. S.
,
2016
, “
Snake-Like and Continuum Robots
,”
Springer Handbook of Robotics
,
Springer
,
New York
, pp.
481
498
.
4.
Park
,
F. C.
,
Kim
,
B. Y.
,
Jang
,
C. J.
, and
Hong
,
J. S.
, 2018, “
Geometric Algorithms for Robot Dynamics: A Tutorial Review
,”
ASME Appl. Mech. Rev.
,
70
(1), p.
010803
.
5.
Luh
,
J. Y. S.
,
Walker
,
M. W.
, and
Paul
,
R. P.
,
1980
, “
On-Line Computational Scheme for Mechanical Manipulators
,”
ASME J. Dyn. Sys. Meas. Control
,
102
(
2
), pp.
69
76
.
6.
Featherstone
,
R.
,
1983
, “
The Calculation of Robot Dynamics Using Articulated-Body Inertia
,”
Int. J. Robot. Res.
,
2
(
1
), pp.
13
30
.
7.
Chirikjian
,
G. S.
, and
Kyatkin
,
A. B.
,
2016
,
Harmonic Analysis for Engineers and Applied Scientists
,
Dover
,
Mineola, NY
.
8.
Chirikjian
,
G. S.
,
2011
,
Stochastic Models, Information Theory, and Lie Groups: Volume 2—Analytic Methods and Modern Applications
,
Birkhäuser
,
Boston, MA
.
9.
Park
,
F. C.
,
1994
, “
Computational Aspects of the Product-of-Exponentials Formula for Robot Kinematics
,”
IEEE Trans. Autom. Control
,
39
(
3
), pp.
643
647
.
10.
Chen
,
G.
,
Wang
,
H.
, and
Lin
,
Z.
,
2014
, “
Determination of Identifiable Parameters in Robot Calibration Based on the POE Formula
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1066
1077
.
11.
Hollerbach
,
J. M.
,
1980
, “
A Recursive Lagrangian Formulation of Manipulator Dynamics and a Comparative Study of Dynamics Formulation Complexity
,”
IEEE Trans. Syst., Man, Cybern.
,
10
(
11
), pp.
730
736
.
12.
Book
,
W. J.
,
1984
, “
A Recursive Lagrangian Dynamics of Flexible Manipulator Arms
,”
Int. J. Rob. Res.
,
3
(
3
), pp.
87
101
.
13.
Naudet
,
J.
,
2005
, “
Forward Dynamics of Multibody Systems: A Recursive Hamiltonian Approach
,”
Ph.D. thesis
, Vrije Universiteit Brussel, Brussels, Belgium.https://cris.vub.be/en/studentthesis/forward-dynamics-of-multibody-system-a-recursive-hamiltonian-approach(57b4ed07-9664-402f-8424-e37e872d6c8e).html
14.
Mohan
,
A.
, and
Saha
,
S. K.
,
2007
, “
A Recursive, Numerically Stable, and Efficient Simulation Algorithm for Serial Robots
,”
Multibody Syst. Dyn.
,
17
(
4
), pp.
291
319
.
15.
Jain
,
A.
,
1991
, “
Unified Formulation of Dynamics for Serial Rigid Multibody Systems
,”
J. Guid. Control Dyn.
,
14
(
3
), pp.
531
542
.
16.
Rodriguez
,
G.
,
1987
, “
Kalman Filtering, Smoothing, and Recursive Robot Arm Forward and Inverse Dynamics
,”
IEEE J. Robot. Automat., RA
,
3
(
6
), pp.
624
639
.
17.
Rodriguez
,
G.
, and
Keutz-Delgado
,
K.
,
1992
, “
Spatial Operator Factorization and Inversion of the Manipulator Mass Matrix
,”
IEEE Trans. Robot. Automat.
,
8
(
1
), pp.
65
76
.
18.
Saha
,
S. K.
,
1997
, “
A Decomposition of the Manipulator Inertia Matrix
,”
IEEE Trans. Rob. Autom.
,
13
(
2
), pp.
301
304
.
19.
Saha
,
S. K.
,
1999
, “
Analytical Expression for the Inverted Inertia Matrix of Serial Robots
,”
Int. J. Rob. Res.
,
18
(
1
), pp.
116
124
.
20.
Angeles
,
J.
, and
Ma
,
O.
,
1998
, “
Dynamic Simulation of n-Axis Serial Robotic Manipulators Using a Natural Orthogonal Complement
,”
Int. J. Robot. Res.
,
7
(
5
), pp.
32
47
.
21.
Sovinsky
,
M. C.
,
Hurtado
,
J. E.
,
Griffith
,
D. T.
, and
Turner
,
J. D.
,
2007
, “
The Hamel Representation: A Diagonalized Poincaré Form
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
4
), pp.
316
323
.
22.
Junkins
,
J. L.
, and
Schaub
,
H.
,
1997
, “
An Instantaneous Eigenstructure Quasivelocity Formulation for Nonlinear Multibody Dynamics
,”
J. Astronaut. Sci.
,
45
(
3
), pp.
279
295
.http://dnc.tamu.edu/drjunkins/yearwise/1997/Archival/JAS_45_3_1997_instantaneous.pdf
23.
Bedrossian
,
N. S.
,
1992
, “
Linearizing Coordinate Transformations and Riemann Curvature
,”
31st IEEE Conference on Decision and Control
(
CDC
), Tucson, AZ, Dec. 16–18, pp.
80
85
.
24.
Loduha
,
T. A.
, and
Ravani
,
B.
,
1995
, “
On First-Order Decoupling of Equations of Motion for Constrained Dynamical Systems
,”
ASME J. Appl. Mech.
,
62
(
1
), pp.
216
216
.
25.
Melhem
,
K.
, and
Wang
,
W.
,
2009
, “
Global Output Tracking Control of Flexible Joint Robots Via Factorization of the Manipulator Mass Matrix
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
428
437
.
26.
Herman
,
P.
, and
Kozłowski
,
K.
,
2006
, “
A Survey of Equations of Motion in Terms of Inertial Quasi-Velocities for Serial Manipulators
,”
Arch. Appl. Mech.
,
76
(
9–10
), pp.
579
614
.
27.
Hamel
,
G.
,
1967
,
Theoretische Mechanik: Eine Einheitliche Einführung in Die Gesamte Mechanik
, Vol.
57
,
Springer-Verlag
, New York.
28.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1985
,
Dynamics, Theory and Applications
,
McGraw-Hill
, New York.
29.
Gibbs
,
J. W.
,
1879
, “
On the Fundamental Formulae of Dynamics
,”
Am. J. Math.
,
2
(
1
), pp.
49
64
.
30.
Huston
,
R. L.
,
1987
, “
On the Equivalence of Kane's Equations and Gibbs' Equations for Multibody Dynamics Formulations
,”
Mech. Res. Commun.
,
14
(
2
), pp.
123
131
.
31.
Desloge
,
E. A.
,
1987
, “
Relationship Between Kane's Equations and the Gibbs–Appell Equations
,”
J. Guid. Control Dyn.
,
10
(
1
), pp.
120
122
.
32.
Keat
,
J. E.
,
1987
, “
Comment on ‘Relationship Between Kane’s Equations and the Gibbs-Appell Equations
,”
J. Guid. Control, Dyn.
,
10
(
6
), pp.
594
595
.
33.
Hooker
,
W. W.
, and
Margulies
,
G.
,
1965
, “
The Dynamical Attitude Equations for an n-Body Satellite’
,”
J. Astronaut. Sci.
,
7
(
4
), pp.
123
128
.
34.
Vereshchagin
,
A. F.
,
1975
, “
Gauss Principle of Least Constraint for Modeling the Dynamics of Automatic Manipulators Using a Digital Computer
,”
Sov. Phys. Doklady
,
20
(
1
), pp.
33
34
.
35.
Fixman
,
M.
,
1974
, “
Classical Statistical Mechanics of Constraints: A Theorem and Application to Polmers
,”
Proc. Nat. Acad. Sci. U.S.A.
,
71
(
8
), pp.
3050
3053
.
36.
Wittenburg
,
J.
,
2010
,
Dynamics of Multibody Systems
,
Springer
,
New York
.
37.
Roberson
,
R. E.
, and
Schwertassek
,
R.
,
2012
,
Dynamics of Multibody Systems
,
Springer
,
New York
.
38.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
, 4th ed.,
Cambridge University Press
,
New York
.
39.
Lee
,
K.
,
Wang
,
Y.
, and
Chirikjian
,
G. S.
,
2007
, “
O(n) Mass Matrix Inversion for Serial Manipulators and Polypeptide Chains Using Lie Derivatives
,”
Robotica
,
25
(
6
), pp.
739
750
.
40.
Müller
,
A.
, and
Maisser
,
P.
,
2003
, “
A Lie-Group Formulation of Kinematics and Dynamics of Constrained MBS and Its Application to Analytical Mechanics
,”
Multibody Syst. Dyn.
,
9
(
4
), pp.
311
352
.
41.
Müller
,
A.
, and
Terze
,
Z.
,
2014
, “
The Significance of the Configuration Space Lie Group for the Constraint Satisfaction in Numerical Time Integration of Multibody Systems
,”
Mech. Mach. Theory
,
82
, pp.
173
202
.
42.
Naudet
,
J.
,
Lafeber
,
D.
, and
Terze
,
Z.
,
2003
, “
General Formulation of an Efficient Recursive Algorithm Based on Canonical Momenta for Forward Dynamics of Open-Loop Multibody Systems
,”
Multibody Dyn.
,
10
(1), pp. 45–59.http://mech.vub.ac.be/multibody/publications/full_texts/ECCOMAS_2003_Naudet.pdf
43.
Walker
,
M. W.
, and
Orin
,
D. E.
,
1982
, “
Efficient Dynamic Computer Simulation of Robotic Mechanisms
,”
ASME J. Dyn. Syst., Meas., Control
,
104
(
3
), pp.
205
211
.
44.
Armstrong
,
W. W.
,
1979
, “
Recursive Solution to the Equations of Motion of an N-Link Manipulator
,”
Fifth World Congress on the Theory of Machines and Mechanisms
, Montreal, QC, Canada, July 8–13, pp.
1342
1346
.
45.
Jain
,
A.
, and
Rodriguez
,
G.
,
1992
, “
Recursive Flexible Multibody System Dynamics Using Spatial Operators
,”
J. Guid. Control Dyn.
,
15
(
6
), pp.
1453
1466
.
46.
Shabana
,
A. A.
,
1997
, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
189
222
.
47.
Anderson
,
K. S.
, and
Duan
,
S.
,
2000
, “
Parallel Implementation of a Low Order Algorithm for Dynamics of Multibody Systems on a Distributed Memory Computing System
,”
J. Eng. Comput.
,
16
(
2
), pp.
96
108
.
48.
Anderson
,
K. S.
,
1993
, “
An Order-N Formulation for the Motion Simulation of General Multi-Rigid-Body Tree Systems
,”
J. Comput. Struct.
,
46
(
3
), pp.
547
559
.
49.
Anderson
,
K. S.
, and
Critchley
,
J. H.
,
2003
, “
Improved ‘Order-N’ Performance Algorithm for the Simulation of Constrained Multirigid-Body Dynamic Systems
,”
Multibody Syst. Dyn.
,
9
(
2
), pp.
185
212
.
50.
Featherstone
,
R.
,
1999
, “
A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(Log(n)) Calculation of Rigid Body Dynamics—Part 2: Trees, Loops and Accuracy
,”
Int. J. Rob. Res.
,
18
(
9
), pp.
876
892
.
51.
Mukherjee
,
R. M.
, and
Anderson
,
K. S.
,
2006
, “
A Logarithmic Complexity Divide-and-Conquer Algorithm for Multi-Flexible Articulated Body Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
1
), pp.
10
21
.
52.
Fijani
,
A.
, and
D'Eleuterio
,
G. M. T.
,
1995
, “
Parallel O(Log N) Algorithms for Computation of Manipulator Forward Dynamics
,”
IEEE Trans. Robot. Automat.
,
11
(
3
), pp.
389
400
.
53.
Ploen
,
S. R.
, and
Park
,
F. C.
,
1999
, “
Coordinate-Invariant Algorithms for Robot Dynamics
,”
IEEE Trans. Rob. Autom.
,
15
(
6
), pp.
1130
1135
.
54.
Chirikjian
,
G. S.
,
1994
, “
Hyper-Redundant Manipulator Dynamics: A Continuum Approximation
,”
Adv. Rob.
,
9
(
3
), pp.
217
243
.
55.
Newmark
,
N. N.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
ASCE J. Eng. Mech. Div.
,
85
(3), pp.
67
94
.http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0011858
56.
Ortiz
,
M.
,
1986
, “
A Note on Energy Conservation and Stability of Nonlinear Timestepping Algorithms
,”
Comput. Struct.
,
24
(
1
), pp.
167
168
.
57.
Verlet
,
L.
,
1967
, “
Computer Experiments on Classical Fluids
,”
Phys. Rev
,
159
(
1
), pp.
98
103
.
58.
Anderson
,
H.
,
1983
, “
RATTLE: A Velocity Version of the SHAKE Algorithm for Molecular Dynamics Calculations
,”
J. Comput. Phys.
,
52
(
1
), pp.
24
34
.
59.
Bobenko
,
A. I.
, and
Suris
,
Y. B.
,
1999
, “
Discrete Time Lagrangian Mechanics on Lie Groups, With an Application to the Lagrange Top
,”
Comm. Math. Phys
,
204
(
1
), pp.
147
188
.
60.
Gonzalez
,
O.
,
1996
, “Design and Analysis of Conserving Integrators for Nonlinear Hamiltonian Systems With Symmetry,”
Ph.D. thesis
, Stanford University, Stanford, CA.https://searchworks.stanford.edu/view/3219326
61.
Hairer
,
E.
,
1994
, “
Backward Analysis of Numerical Integrators and Symplectic Methods
,”
Ann. Numer. Math.
,
1
, pp.
107
132
.https://archive-ouverte.unige.ch/unige:12640
62.
Budd
,
C. J.
, and
Iserles
,
A.
,
1999
, “
Geometric Integration: Numerical Solution of Differential Equations on Manifolds
,”
Philos. Trans. R. Soc. London Ser. A, Math. Phys. Eng. Sci.
,
357
(
1754
), pp.
945
956
.
63.
Iserles
,
A.
,
Munthe-Kaas
,
H.
, and
Zanna
,
A.
,
2000
, “
Lie-Group Methods
,”
Acta Numer.
,
9
(
0
), pp.
215
365
.
64.
Leimkuhler
,
B.
,
Patrick
,
G.
, and
Symplectic
,
I.
,
1996
, “
On Riemannian Manifolds
,”
J. Nonlin. Sci.
,
6
(
4
), pp.
367
384
.
65.
Wendlandt
,
J. M.
, and
Marsden
,
J. E.
,
1997
, “
Mechanical Integrators Derived From a Discrete Variational Principle
,”
Physica D
,
106
(
3–4
), pp.
223
246
.
66.
Reich
,
S.
,
1997
, “
On Higher–Order Semi–Explicit Symplectic Partitioned Runge–Kutta Methods for Constrained Hamiltonian Systems
,”
Numer. Math.
,
76
(
2
), pp.
231
247
.
67.
Marsden
,
J. E.
, and
West
,
M.
,
2001
, “
Discrete Mechanics and Variational Integrators
,”
Acta Numer.
,
10
, pp.
357
514
.
68.
Kobilarov
,
M. B.
, and
Marsden
,
J. E.
,
2011
, “
Discrete Geometric Optimal Control on Lie Groups
,”
IEEE Trans. Rob.
,
27
(
4
), pp.
641
655
.
69.
Arnold
,
M.
,
Cardona
,
A.
, and
Brüls
,
O.
,
2016
, “
A Lie Algebra Approach to Lie Group Time Integration of Constrained Systems
,”
Structure-Preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics
, Springer, Cham, Switzerland, pp.
91
158
.
You do not currently have access to this content.