Abstract
Extreme events, such as rogue waves, earthquakes, and stock market crashes, occur spontaneously in many dynamical systems. Because of their usually adverse consequences, quantification, prediction, and mitigation of extreme events are highly desirable. Here, we review several aspects of extreme events in phenomena described by high-dimensional, chaotic dynamical systems. We especially focus on two pressing aspects of the problem: (i) mechanisms underlying the formation of extreme events and (ii) real-time prediction of extreme events. For each aspect, we explore methods relying on models, data, or both. We discuss the strengths and limitations of each approach as well as possible future research directions.
References
1.
Kharif
,
C.
, and
Pelinovsky
,
E.
, 2003
, “
Physical Mechanisms of the Rogue Wave Phenomenon
,” Eur. J. Mech. B/Fluids
,
22
(6
), pp. 603
–634
.10.1016/j.euromechflu.2003.09.0022.
Dysthe
,
K.
,
Krogstad
,
H. E.
, and
Müller
,
P.
, 2008
, “
Oceanic Rogue Waves
,” Annu. Rev. Fluid Mech.
,
40
(1
), pp. 287
–310
.10.1146/annurev.fluid.40.111406.1022033.
Donelan
,
M. A.
, and
Magnusson
,
A.-K.
, 2017
, “
The Making of the Andrea Wave and Other Rogues
,” Sci. Rep.
,
7
, p. 44124
.10.1038/srep441244.
Ropelewski
,
C. F.
, and
Halpert
,
M. S.
, 1987
, “
Global and Regional Scale Precipitation Patterns Associated With the El Niño/Southern Oscillation
,” Mon. Weather Rev.
,
115
(8
), pp. 1606
–1626
.10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;25.
Easterling
,
D. R.
,
Evans
,
J.
,
Groisman
,
P. Y.
,
Karl
,
T. R.
,
Kunkel
,
K. E.
, and
Ambenje
,
P.
, 2000
, “
Observed Variability and Trends in Extreme Climate Events: A Brief Review
,” Bull. Am. Meteorol. Soc.
,
81
(3
), pp. 417
–425
.10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;26.
Moy
,
C. M.
,
Seltzer
,
G. O.
,
Rodbell
,
D. T.
, and
Anderson
,
D. M.
, 2002
, “
Variability of El Niño/Southern Oscillation Activity at Millennial Timescales During the Holocene Epoch
,” Nature
,
420
(6912
), p. 162
.10.1038/nature011947.
Dakos
,
V.
,
Scheffer
,
M.
,
van Nes
,
E. H.
,
Brovkin
,
V.
,
Petoukhov
,
V.
, and
Held
,
H.
, 2008
, “
Slowing Down as an Early Warning Signal for Abrupt Climate Change
,” Proc. Natl. Acad. Sci.
,
105
(38
), pp. 14308
–14312
.10.1073/pnas.08024301058.
Geller, R. J.
, 1997, “
Earthquake Prediction: A Critical Review
,” Geophys. J. Int.
,
131
(3), pp. 425–450.10.1111/j.1365-246X.1997.tb06588.x9.
Crucitti
,
P.
,
Latora
,
V.
, and
Marchiori
,
M.
, 2004
, “
Model for Cascading Failures in Complex Networks
,” Phys. Rev. E
,
69
(4
), p. 045104
.10.1103/PhysRevE.69.04510410.
Fang
,
X.
,
Misra
,
S.
,
Xue
,
G.
, and
Yang
,
D.
, 2012
, “
Smart Grid—The New and Improved Power Grid: A Survey
,” IEEE Commun. Surv. Tutorials
,
14
(4
), pp. 944
–980
.10.1109/SURV.2011.101911.0008711.
Scheffer
,
M.
,
Bascompte
,
J.
,
Brock
,
W. A.
,
Brovkin
,
V.
,
Carpenter
,
S. R.
,
Dakos
,
V.
,
Held
,
H.
,
Van Nes
,
E. H.
,
Rietkerk
,
M.
, and
Sugihara
,
G.
, 2009
, “
Early-Warning Signals for Critical Transitions
,” Nature
,
461
(7260
), pp. 53
–59
.10.1038/nature0822712.
Ghil
,
M.
,
Yiou
,
P.
,
Hallegatte
,
S.
,
Malamud
,
B.
,
Naveau
,
P.
,
Soloviev
,
A.
,
Friederichs
,
P.
,
Keilis-Borok
,
V.
,
Kondrashov
,
D.
,
Kossobokov
,
V.
,
Mestre, O.
,
Nicolis, C.
,
Rust, H. W.
,
Shebalin, P.
,
Vrac, M.
,
Witt, A.
, and
Zaliapin, I.
, 2011
, “
Extreme Events: Dynamics, Statistics and Prediction
,” Nonlinear Processes Geophys.
,
18
(3
), pp. 295
–350
.10.5194/npg-18-295-201113.
Dakos
,
V.
,
Carpenter
,
S. R.
,
Brock
,
W. A.
,
Ellison
,
A. M.
,
Guttal
,
V.
,
Ives
,
A. R.
,
Kefi
,
S.
,
Livina
,
V.
,
Seekell
,
D. A.
,
van Nes
,
E. H.
, and
Scheffer, M.
, 2012
, “
Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data
,” PLoS One
,
7
(7
), p. e41010
.10.1371/journal.pone.004101014.
Ben-Menahem
,
A.
, and
Singh
,
S. J.
, 2012
, Seismic Waves and Sources
,
Springer Science & Business Media
, New York.15.
Murphy
,
J. M.
,
Sexton
,
D. M.
,
Barnett
,
D. N.
,
Jones
,
G. S.
,
Webb
,
M. J.
,
Collins
,
M.
, and
Stainforth
,
D. A.
, 2004
, “
Quantification of Modelling Uncertainties in a Large Ensemble of Climate Change Simulations
,” Nature
,
430
(7001
), p. 768
.10.1038/nature0277116.
Scarrott
,
C.
, and
MacDonald
,
A.
, 2012
, “
A Review of Extreme Value Threshold Estimation and Uncertainty Quantification
,” REVSTAT–Stat. J.
,
10
(1
), pp. 33
–60
.https://www.ine.pt/revstat/pdf/rs120102.pdf17.
Mohamad
,
M. A.
, and
Sapsis
,
T. P.
, 2015
, “
Probabilistic Description of Extreme Events in Intermittently Unstable Dynamical Systems Excited by Correlated Stochastic Processes
,” SIAM/ASA J. Uncertainty Quantif.
,
3
(1
), pp. 709
–736
.10.1137/14097823518.
Doucet
,
A.
,
De Freitas
,
N.
, and
Gordon
,
N.
, 2001
, “
An Introduction to Sequential Monte Carlo Methods
,” Sequential Monte Carlo Methods in Practice
,
Springer
, New York, pp. 3
–14
.19.
Majda
,
A. J.
, and
Harlim
,
J.
, 2012
, Filtering Complex Turbulent Systems
,
Cambridge University Press, Cambridge, UK
.20.
Vanden-Eijnden
,
E.
, and
Weare
,
J.
, 2013
, “
Data Assimilation in the Low Noise Regime With Application to the Kuroshio
,” Mon. Weather Rev.
,
141
(6
), pp. 1822
–1841
.10.1175/MWR-D-12-00060.121.
Altwegg
,
R.
,
Visser
,
V.
,
Bailey
,
L. D.
, and
Erni
,
B.
, 2017
, “
Learning From Single Extreme Events
,” Philos. Trans. R. Soc. B
,
372
(1723
), p. 20160141
.10.1098/rstb.2016.014122.
Alligood
,
K. T.
,
Sauer
,
T. D.
, and
Yorke
,
J. A.
, 1996
, Chaos: An Introduction to Dynamical Systems
,
Springer
, New York.23.
Hirsch
,
M. W.
,
Smale
,
S.
, and
Devaney
,
R. L.
, 2012
, Differential Equations, Dynamical Systems, and an Introduction to Chaos
,
Academic Press
, New York.24.
Sornette
,
D.
, and
Ouillon
,
G.
, 2012
, “
Dragon-Kings: Mechanisms, Statistical Methods and Empirical Evidence
,” Eur. Phys. J. Spec. Top.
,
205
(1
), pp. 1
–26
.10.1140/epjst/e2012-01559-525.
Sornette
,
D.
, 2009
, “
Dragon-Kings, Black Swans and the Prediction of Crises
,” preprint arXiv: 0907.4290.
https://arxiv.org/abs/0907.429026.
Turitsyn
,
K.
,
Sulc
,
P.
,
Backhaus
,
S.
, and
Chertkov
,
M.
, 2011
, “
Options for Control of Reactive Power by Distributed Photovoltaic Generators
,” Proc. IEEE
,
99
(6
), pp. 1063
–1073
.10.1109/JPROC.2011.211675027.
Susuki
,
Y.
, and
Mezic
,
I.
, 2012
, “
Nonlinear Koopman Modes and a Precursor to Power System Swing Instabilities
,” IEEE Trans. Power Syst.
,
27
(3
), pp. 1182
–1191
.10.1109/TPWRS.2012.218362528.
Belk
,
J. A.
,
Inam
,
W.
,
Perreault
,
D. J.
, and
Turitsyn
,
K.
, 2016
, “
Stability and Control of Ad Hoc dc Microgrids
,” IEEE 55th Conference on Decision and Control
(CDC
), Las Vegas, NV, Dec. 12–14, pp. 3271
–3278
.10.1109/CDC.2016.779876129.
Hugo
,
L. D.
,
de Cavalcante
,
S.
,
Oriá
,
M.
,
Sornette
,
D.
,
Ott
,
E.
, and
Gauthier
,
D. J.
, 2013
, “
Predictability and Suppression of Extreme Events in a Chaotic System
,” Phys. Rev. Lett.
,
111
(19
), p. 198701
.10.1103/PhysRevLett.111.19870130.
Galuzio
,
P. P.
,
Viana
,
R. L.
, and
Lopes
,
S. R.
, 2014
, “
Control of Extreme Events in the Bubbling Onset of Wave Turbulence
,” Phys. Rev. E
,
89
(4
), p. 040901
.10.1103/PhysRevE.89.04090131.
Chen
,
Y.-Z.
,
Huang
,
Z.-G.
, and
Lai
,
Y.-C.
, 2014
, “
Controlling Extreme Events on Complex Networks
,” Nat. Sci. Rep.
,
4
, p. 6121
.10.1038/srep0612132.
Chen
,
Y.-Z.
,
Huang
,
Z.-G.
,
Zhang
,
H.-F.
,
Eisenberg
,
D.
,
Seager
,
T. P.
, and
Lai
,
Y.-C.
, 2015
, “
Extreme Events in Multilayer, Interdependent Complex Networks and Control
,” Nat. Sci. Rep.
,
5
, p. 17277
.10.1038/srep1727733.
Bialonski
,
S.
,
Ansmann
,
G.
, and
Kantz
,
H.
, 2015
, “
Data-Driven Prediction and Prevention of Extreme Events in a Spatially Extended Excitable System
,” Phys. Rev. E
,
92
(4
), p. 042910
.10.1103/PhysRevE.92.04291034.
Joo
,
H. K.
,
Mohamad
,
M. A.
, and
Sapsis
,
T. P.
, 2017
, “
Extreme Events and Their Optimal Mitigation in Nonlinear Structural Systems Excited by Stochastic Loads: Application to Ocean Engineering Systems
,” Ocean Eng.
,
142
, pp. 145
–160
.10.1016/j.oceaneng.2017.06.06635.
Morgan
,
M. G.
,
Henrion
,
M.
, and
Small
,
M.
, 1990
, Uncertainty: A Guide to Dealing With Uncertainty in Quantitative Risk and Policy Analysis
,
Cambridge University Press
,
Cambridge, UK
.36.
Wilmott
,
P.
, 2007
, Paul Wilmott Introduces Quantitative Finance
,
Wiley
, Chichester, UK.37.
McNeil
,
A. J.
,
Frey
,
R.
, and
Embrechts
,
P.
, 2015
, Quantitative Risk Management: Concepts, Techniques and Tools
,
Princeton University Press
, Princeton, NJ.38.
Longin
,
F.
, 2017
, Extreme Events in Finance: A Handbook of Extreme Value Theory and Its Applications
(Wiley Handbooks in Financial Engineering and Econometrics),
Wiley
, Hoboken, NJ.39.
de Haan
,
L.
, and
Ferreira
,
A.
, 2007
, Extreme Value Theory: An Introduction
,
Springer Science & Business Media
, New York.40.
Fréchet
,
M.
, “
Sur la Loi de Probabilité de L'écart Maximum
,” Ann. Soc. Polon. Math
,
6
, pp. 93
–116
.41.
Fisher
,
R. A.
, and
Tippett
,
L. H. C.
, 1928
, “
Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample
,” Math. Proc. Cambridge Philos. Soc.
,
24
(2), pp. 180
–190
.10.1017/S030500410001568142.
Gnedenko
,
B.
, 1943
, “
Sur la Distribution Limite du Terme Maximum D'une Serie Aleatoire
,” Ann. Math.
,
44
(3
), pp. 423
–453
.43.
Watson
,
G. S.
, 1954
, “
Extreme Values in Samples From m-Dependent Stationary Stochastic Processes
,” Ann. Math. Stat.
,
25
(4
), pp. 798
–800
.10.1214/aoms/117772867044.
Loynes
,
R. M.
, 1965
, “
Extreme Values in Uniformly Mixing Stationary Stochastic Processes
,” Ann. Math. Stat.
,
36
(3
), pp. 993
–999
.10.1214/aoms/117770007145.
Leadbetter
,
M. R.
, 1974
, “
On Extreme Values in Stationary Sequences
,” Z. Für Wahrscheinlichkeitstheorie Verw. Geb.
,
28
(4
), pp. 289
–303
.10.1007/BF0053294746.
Leadbetter
,
M. R.
, 1983
, “
Extremes and Local Dependence in Stationary Sequences
,” Probab. Theory Relat. Fields
,
65
(2
), pp. 291
–306
.10.1007/BF0053248447.
Hsing
,
T.
,
Hüsler
,
J.
, and
Leadbetter
,
M. R.
, 1988
, “
On the Exceedance Point Process for a Stationary Sequence
,” Probab. Theory Relat. Fields
,
78
(1
), pp. 97
–112
.10.1007/BF0071803848.
Leadbetter
,
M. R.
, and
Nandagopalan
,
S.
, 1989
, “
On Exceedance Point Processes for Stationary Sequences Under Mild Oscillation Restrictions
,” Extreme Value Theory
, Springer, New York, pp. 69
–80
.49.
Chernick
,
M. R.
,
Hsing
,
T.
, and
McCormick
,
W. P.
, 1991
, “
Calculating the Extremal Index for a Class of Stationary Sequences
,” Adv. Appl. Probab.
,
23
(4
), pp. 835
–850
.10.2307/142767950.
Freitas
,
A. C. M.
, and
Freitas
,
J. M.
, 2008
, “
On the Link Between Dependence and Independence in Extreme Value Theory for Dynamical Systems
,” Stat. Probab. Lett.
,
78
(9
), pp. 1088
–1093
.10.1016/j.spl.2007.11.00251.
Freitas
,
A. C. M.
,
Freitas
,
J. M.
, and
Todd
,
M.
, 2015
, “
Speed of Convergence for Laws of Rare Events and Escape Rates
,” Stochastic Processes Appl.
,
125
(4
), pp. 1653
–1687
.10.1016/j.spa.2014.11.01152.
Lucarini
,
V.
,
Faranda
,
D.
,
Freitas
,
A. C. M.
,
Freitas
,
J. M.
,
Holland
,
M.
,
Kuna
,
T.
,
Nicol
,
M.
,
Todd
,
M.
, and
Vaienti
,
S.
, 2016
, Extremes and Recurrence in Dynamical Systems
,
Wiley
, Hoboken, NJ.53.
Cramèr
,
H.
, 1938
, “
Sur un Nouveau Théorème-limite de la Théorie Des Probabilités
,” Actual. Sci. Ind.
,
736
, pp. 5
–23
.54.
Donsker
,
M. D.
, and
Varadhan
,
S. R. S.
, 1975
, “
Asymptotic Evaluation of Certain Markov Process Expectations for Large Time—I
,” Commun. Pure Appl. Math.
,
28
(1
), pp. 1
–47
.10.1002/cpa.316028010255.
Donsker
,
M. D.
, and
Varadhan
,
S. R. S.
, 1975
, “
Asymptotic Evaluation of Certain Markov Process Expectations for Large Time—II
,” Commun. Pure Appl. Math.
,
28
(2
), pp. 279
–301
.10.1002/cpa.316028020656.
Donsker
,
M. D.
, and
Varadhan
,
S. R. S.
, 1976
, “
Asymptotic Evaluation of Certain Markov Process Expectations for Large Time—III
,” Commun. Pure Appl. Math.
,
29
(4
), pp. 389
–461
.10.1002/cpa.316029040557.
Donsker
,
M. D.
, and
Varadhan
,
S. R. S.
, 1983
, “
Asymptotic Evaluation of Certain Markov Process Expectations for Large Time—IV
,” Commun. Pure Appl. Math.
,
36
(2
), pp. 183
–212
.10.1002/cpa.316036020458.
59.
Touchette
,
H.
, 2009
, “
The Large Deviation Approach to Statistical Mechanics
,” Phys. Rep.
,
478
(1–3
), pp. 1
–69
.10.1016/j.physrep.2009.05.00260.
Touchette
,
H.
, 2011
, “
A Basic Introduction to Large Deviations: Theory, Applications, Simulations
,” preprint arXiv: 1106.4146.
https://arxiv.org/abs/1106.414661.
Eyring
,
H.
, 1935
, “
The Activated Complex in Chemical Reactions
,” J. Chem. Phys.
,
3
(2
), pp. 107
–115
.10.1063/1.174960462.
Evans
,
M. G.
, and
Polanyi
,
M.
, 1935
, “
Some Applications of the Transition State Method to the Calculation of Reaction Velocities, Especially in Solution
,” Trans. Faraday Soc.
,
31
, pp. 875
–894
.10.1039/tf935310087563.
Laidler
,
K. J.
, and
King
,
M. C.
, 1983
, “
Development of Transition-State Theory
,” J. Phys. Chem.
,
87
(15
), pp. 2657
–2664
.10.1021/j100238a00264.
Truhlar
,
D. G.
,
Garrett
,
B. C.
, and
Klippenstein
,
S. J.
, 1996
, “
Current Status of Transition-State Theory
,” J. Phys. Chem.
,
100
(31
), pp. 12771
–12800
.10.1021/jp953748q65.
Vanden-Eijnden
,
E.
, 2006
, “
Transition Path Theory
,” Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology
, Vol.
1
, Springer, Berlin, pp. 453
–493
.66.
Metzner
,
P.
,
Schütte
,
C.
, and
Vanden-Eijnden
,
E.
, 2006
, “
Illustration of Transition Path Theory on a Collection of Simple Examples
,” J. Chem. Phys.
,
125
(8
), p. 084110
.10.1063/1.233544767.
Weinan
,
E.
, and
Vanden-Eijnden
,
E.
, 2010
, “
Transition-Path Theory and Path-Finding Algorithms for the Study of Rare Events
,” Annu. Rev. Phys. Chem.
,
61
(1
), pp. 391
–420
.10.1146/annurev.physchem.040808.09041268.
van der Pol
,
B.
, 1926
, “
LXXXVIII—on ‘Relaxation-Oscillations'
,” London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
2
(11
), pp. 978
–992
.10.1080/1478644260856412769.
van der Pol
,
B.
, 1934
, “
The Nonlinear Theory of Electric Oscillations
,” Proc. Inst. Radio Eng.
,
22
(9
), pp. 1051
–1086
.10.1109/JRPROC.1934.22678170.
Benoît
,
E.
, 1983
, “
Systèmes Lents-rapides Dans ℝ3 et Leurs Canards
,” Astérisque
,
109–110
, pp. 159
–191
.71.
Field
,
R. J.
, and
Noyes
,
R. M.
, 1974
, “
Oscillations in Chemical Systems—IV: Limit Cycle Behavior in a Model of a Real Chemical Reaction
,” J. Chem. Phys.
,
60
(5
), pp. 1877
–1884
.10.1063/1.168128872.
Gillespie
,
D. T.
, 1977
, “
Exact Stochastic Simulation of Coupled Chemical Reactions
,” J. Phys. Chem.
,
81
(25
), pp. 2340
–2361
.10.1021/j100540a00873.
Connors
,
K. A.
, 1990
, Chemical Kinetics: The Study of Reaction Rates in Solution
,
Wiley
, Hoboken, NJ.74.
Koper
,
M. T. M.
, and
Gaspard
,
P.
, 1991
, “
Mixed-Mode and Chaotic Oscillations in a Simple Model of an Electrochemical Oscillator
,” J. Phys. Chem.
,
95
(13
), pp. 4945
–4947
.10.1021/j100166a00975.
Arneodo
,
A.
, and
Elezgaray
,
J.
, 1995
, “
Modeling Front Pattern Formation and Intermittent Bursting Phenomena in the Couette Flow Reactor
,” Chemical Waves and Patterns
,
R.
Kapral
and
K.
Showalter
, eds.,
Springer
, Dordrecht,
The Netherlands
, pp. 517
–570
.76.
Ermentrout
,
G. B.
, and
Kopell
,
N.
, 1986
, “
Parabolic Bursting in an Excitable System Coupled With a Slow Oscillation
,” SIAM J. Appl. Math.
,
46
(2
), pp. 233
–253
.10.1137/014601777.
Rinzel
,
J.
, 1987
, “
A Formal Classification of Bursting Mechanisms in Excitable Systems
,” Mathematical Topics in Population Biology, Morphogenesis and Neurosciences
,
Springer
, New York, pp. 267
–281
.78.
Izhikevich
,
E. M.
, 2000
, “
Neural Excitability, Spiking and Bursting
,” Int. J. Bifurcation Chaos
,
10
(06
), pp. 1171
–1266
.10.1142/S021812740000084079.
Guckenheimer
,
J.
, and
Oliva
,
R. A.
, 2002
, “
Chaos in the Hodgkin–Huxley Model
,” SIAM J. Appl. Dyn. Syst.
,
1
(1
), pp. 105
–114
.10.1137/S111111110139404080.
Ansmann
,
G.
,
Karnatak
,
R.
,
Lehnertz
,
K.
, and
Feudel
,
U.
, 2013
, “
Extreme Events in Excitable Systems and Mechanisms of Their Generation
,” Phys. Rev. E
,
88
(5
), p. 052911
.10.1103/PhysRevE.88.05291181.
Karnatak
,
R.
,
Ansmann
,
G.
,
Feudel
,
U.
, and
Lehnertz
,
K.
, 2014
, “
Route to Extreme Events in Excitable Systems
,” Phys. Rev. E
,
90
(2
), p. 022917
.10.1103/PhysRevE.90.02291782.
Saha
,
A.
, and
Feudel
,
U.
, 2017
, “
Extreme Events in FitzHugh-Nagumo Oscillators Coupled With Two Time Delays
,” Phys. Rev. E
,
95
(6
), p. 062219
.10.1103/PhysRevE.95.06221983.
Latif
,
M.
, and
Keenlyside
,
N. S.
, 2009
, “
El Niño/Southern Oscillation Response to Global Warming
,” Proc. Natl. Acad. Sci.
,
106
(49
), pp. 20578
–20583
.10.1073/pnas.071086010584.
Dijkstra
,
H. A.
, 2013
, Nonlinear Climate Dynamics
,
Cambridge University Press
,
Cambridge, UK
.85.
Roberts
,
A.
,
Guckenheimer
,
J.
,
Widiasih
,
E.
,
Timmermann
,
A.
, and
Jones
,
C. K. R. T.
, 2016
, “
Mixed-Mode Oscillations of El Niño–Southern Oscillation
,” J. Atmos. Sci.
,
73
(4
), pp. 1755
–1766
.10.1175/JAS-D-15-0191.186.
Haller
,
G.
, and
Sapsis
,
T.
, 2010
, “
Localized Instability and Attraction Along Invariant Manifolds
,” SIAM J. Appl. Dyn. Syst.
,
9
(2
), pp. 611
–633
.10.1137/08074324X87.
Sapsis
,
T.
, and
Haller
,
G.
, 2008
, “
Instabilities in the Dynamics of Neutrally Buoyant Particles
,” Phys. Fluids
,
20
(1
), p. 017102
.10.1063/1.283032888.
Wiggins
,
S.
, 1994
, “
Normally Hyperbolic Invariant Manifolds in Dynamical Systems
,” Applied Mathematical Sciences
, Vol.
105
,
Springer
, New York.89.
Jones
,
C. K. R. T.
, 1995
, “
Geometric Singular Perturbation Theory
,” Dynamical Systems
,
Springer
, New York, pp. 44
–118
.90.
Desroches
,
M.
,
Guckenheimer
,
J.
,
Krauskopf
,
B.
,
Kuehn
,
C.
,
Osinga
,
H. M.
, and
Wechselberger
,
M.
, 2012
, “
Mixed-Mode Oscillations With Multiple Time Scales
,” SIAM Rev.
,
54
(2
), pp. 211
–288
.10.1137/10079123391.
Fenichel
,
N.
, 1979
, “
Geometric Singular Perturbation Theory for Ordinary Differential Equations
,” J. Differ. Equations
,
31
(1
), pp. 53
–98
.10.1016/0022-0396(79)90152-992.
Guckenheimer
,
J.
, 2008
, “
Singular Hopf Bifurcation in Systems With Two Slow Variables
,” SIAM J. Appl. Dyn. Syst.
,
7
(4
), pp. 1355
–1377
.10.1137/08071852893.
Guckenheimer
,
J.
, and
Vladimirsky
,
A.
, 2004
, “
A Fast Method for Approximating Invariant Manifolds
,” SIAM J. Appl. Dyn. Syst.
,
3
(3
), pp. 232
–260
.10.1137/03060017994.
Krauskopf
,
B.
,
Osinga
,
H. M.
,
Doedel
,
E. J.
,
Henderson
,
M. E.
,
Guckenheimer
,
J.
,
Vladimirsky
,
A.
,
Dellnitz
,
M.
, and
Junge
,
O.
, 2005
, “
A Survey of Methods for Computing (Un)stable Manifolds of Vector Fields
,” Int. J. Bifurcation Chaos
,
15
(3
), pp. 763
–791
.10.1142/9789812774569_000495.
Lebiedz
,
D.
,
Siehr
,
J.
, and
Unger
,
J.
, 2011
, “
A Variational Principle for Computing Slow Invariant Manifolds in Dissipative Dynamical Systems
,” SIAM J. Sci. Comput.
,
33
(2
), pp. 703
–720
.10.1137/10079031896.
Castelli
,
R.
,
Lessard
,
J.-P.
, and
James
,
J. D. M.
, 2015
, “
Parameterization of Invariant Manifolds for Periodic Orbits—I: Efficient Numerics Via the Floquet Normal Form
,” SIAM J. Appl. Dyn. Syst.
,
14
(1
), pp. 132
–167
.10.1137/14096020797.
Babaee
,
H.
,
Farazmand
,
M.
,
Haller
,
G.
, and
Sapsis
,
T. P.
, 2017
, “
Reduced-Order Description of Transient Instabilities and Computation of Finite-Time Lyapunov Exponents
,” Chaos
,
27
(6
), p. 063103
.10.1063/1.498462798.
Shilnikov
,
L. P.
, 1965
, “
A Case of the Existence of a Denumerable Set of Periodic Motions
,” Sov. Math. Dokl.
,
6
, pp. 163
–166
.99.
Gaspard
,
P.
, and
Nicolis
,
G.
, 1983
, “
What Can We Learn From Homoclinic Orbits in Chaotic Dynamics?
,” J. Stat. Phys.
,
31
(3
), pp. 499
–518
.10.1007/BF01019496100.
Cvitanović
,
P.
, and
Eckhardt
,
B.
, 1989
, “
Periodic-Orbit Quantization of Chaotic Systems
,” Phys. Rev. Lett.
,
63
(8
), p. 823
.10.1103/PhysRevLett.63.823101.
Cvitanović
,
P.
, 1991
, “
Periodic Orbits as the Skeleton of Classical and Quantum Chaos
,” Phys. D: Nonlinear Phenom.
,
51
(1–3
), pp. 138
–151
.10.1016/0167-2789(91)90227-Z102.
Rössler
,
O.
, 1976
, “
An Equation for Continuous Chaos
,” Phys. Lett. A
,
57
(5
), pp. 397
–398
.10.1016/0375-9601(76)90101-8103.
Letellier
,
C.
,
Dutertre
,
P.
, and
Maheu
,
B.
, 1995
, “
Unstable Periodic Orbits and Templates of the Rössler System: Toward a Systematic Topological Characterization
,” Chaos
,
5
(1
), pp. 271
–282
.10.1063/1.166076104.
Meacham
,
S. P.
, 2000
, “
Low-Frequency Variability in the Wind-Driven Circulation
,” J. Phys. Oceanogr.
,
30
(2
), pp. 269
–293
.10.1175/1520-0485(2000)030<0269:LFVITW>2.0.CO;2105.
Timmermann
,
A.
,
Jin
,
F.-F.
, and
Abshagen
,
J.
, 2003
, “
A Nonlinear Theory for El Niño Bursting
,” J. Atmos. Sci.
,
60
(1
), pp. 152
–165
.10.1175/1520-0469(2003)060<0152:ANTFEN>2.0.CO;2106.
Ermentrout
,
B.
, 1998
, “
Neural Networks as Spatio-Temporal Pattern-Forming Systems
,” Rep. Prog. Phys.
,
61
(4
), p. 353
.10.1088/0034-4885/61/4/002107.
Izhikevich
,
E. M.
, 2003
, “
Simple Model of Spiking Neurons
,” IEEE Trans. Neural Networks
,
14
(6
), pp. 1569
–1572
.10.1109/TNN.2003.820440108.
Elezgaray
,
J.
, and
Arneodo
,
A.
, 1992
, “
Crisis-Induced Intermittent Bursting in Reaction-Diffusion Chemical Systems
,” Phys. Rev. Lett.
,
68
(5
), p. 714
.10.1103/PhysRevLett.68.714109.
Farazmand
,
M.
, and
Sapsis
,
T. P.
, 2016
, “
Dynamical Indicators for the Prediction of Bursting Phenomena in High-Dimensional Systems
,” Phys. Rev. E
,
94
(3–1
), p. 032212
.10.1103/PhysRevE.94.032212110.
Coller
,
B.
,
Holmes
,
P.
, and
Lumley
,
J.
, 1994
, “
Interaction of Adjacent Bursts in the Wall Region
,” Phys. Fluids
,
6
(2
), pp. 954
–961
.10.1063/1.868425111.
Jones
,
C.
, and
Kopell
,
N.
, 1994
, “
Tracking Invariant Manifolds With Differential Forms in Singularly Perturbed Systems
,” J. Differ. Equations
,
108
(1
), pp. 64
–88
.10.1006/jdeq.1994.1025112.
Han
,
S. K.
,
Kurrer
,
C.
, and
Kuramoto
,
Y.
, 1995
, “
Dephasing and Bursting in Coupled Neural Oscillators
,” Phys. Rev. Lett.
,
75
(17
), p. 3190
.10.1103/PhysRevLett.75.3190113.
Haller
,
G.
, and
Wiggins
,
S.
, 1995
, “
Multi-Pulse Jumping Orbits and Homoclinic Trees in a Modal Truncation of the Damped-Forced Nonlinear Schrödinger Equation
,” Phys. D: Nonlinear Phenom.
,
85
(3
), pp. 311
–347
.10.1016/0167-2789(95)00120-S114.
Coller
,
B.
, and
Holmes
,
P.
, 1997
, “
Suppression of Bursting
,” Automatica
,
33
(1
), pp. 1
–11
.10.1016/S0005-1098(96)00137-9115.
Kawahara
,
G.
, and
Kida
,
S.
, 2001
, “
Periodic Motion Embedded in Plane Couette Turbulence: Regeneration Cycle and Burst
,” J. Fluid Mech.
,
449
, pp. 291
–300
.10.1017/S0022112001006243116.
Farazmand
,
M.
, 2016
, “
An Adjoint-Based Approach for Finding Invariant Solutions of Navier–Stokes Equations
,” J. Fluid Mech.
,
795
, pp. 278
–312
.10.1017/jfm.2016.203117.
Horsthemke
,
W.
, 1984
, “
Noise Induced Transitions
,” Non-Equilibrium Dynamics in Chemical Systems
,
Springer
, New York, pp. 150
–160
.118.
Van den Broeck
,
C.
,
Parrondo
,
J. M. R.
, and
Toral
,
R.
, 1994
, “
Noise-Induced Nonequilibrium Phase Transition
,” Phys. Rev. Lett.
,
73
(25
), p. 3395
.10.1103/PhysRevLett.73.3395119.
Neiman
,
A. B.
, and
Russell
,
D. F.
, 2002
, “
Synchronization of Noise-Induced Bursts in Noncoupled Sensory Neurons
,” Phys. Rev. Lett.
,
88
(13
), p. 138103
.10.1103/PhysRevLett.88.138103120.
Moore
,
R. O.
,
Biondini
,
G.
, and
Kath
,
W. L.
, 2008
, “
A Method to Compute Statistics of Large, Noise-Induced Perturbations of Nonlinear Schrödinger Solitons
,” SIAM Rev.
,
50
(3
), pp. 523
–549
.10.1137/080722977121.
Forgoston
,
E.
, and
Moore
,
R. O.
, 2017
, “
A Primer on Noise-Induced Transitions in Applied Dynamical Systems
,” SIAM Rev.
,
60
(4), pp. 969–1009.10.1137/17M1142028122.
Wigner
,
E.
, 1938
, “
The Transition State Method
,” Trans. Faraday Soc.
,
34
, pp. 29
–41
.10.1039/tf9383400029123.
Horiuti
,
J.
, 1938
, “
On the Statistical Mechanical Treatment of the Absolute Rate of Chemical Reaction
,” Bull. Chem. Soc. Jpn.
,
13
(1
), pp. 210
–216
.10.1246/bcsj.13.210124.
Yamamoto
,
T.
, 1960
, “
Quantum Statistical Mechanical Theory of the Rate of Exchange Chemical Reactions in the Gas Phase
,” J. Chem. Phys.
,
33
(1
), pp. 281
–289
.10.1063/1.1731099125.
Chandler
,
D.
, 1978
, “
Statistical Mechanics of Isomerization Dynamics in Liquids and the Transition State Approximation
,” J. Chem. Phys.
,
68
(6
), pp. 2959
–2970
.10.1063/1.436049126.
Pratt
,
L. R.
, 1986
, “
A Statistical Method for Identifying Transition States in High Dimensional Problems
,” J. Chem. Phys.
,
85
(9
), pp. 5045
–5048
.10.1063/1.451695127.
Weinan
,
E.
, and
Vanden-Eijnden
,
E.
, 2006
, “
Towards a Theory of Transition Paths
,” J. Stat. Phys.
,
123
(3
), p. 503
.10.1007/s10955-005-9003-9128.
Gonzalez
,
C.
, and
Schlegel
,
H. B.
, 1989
, “
An Improved Algorithm for Reaction Path Following
,” J. Chem. Phys.
,
90
(4
), pp. 2154
–2161
.10.1063/1.456010129.
Bolhuis
,
P. G.
,
Chandler
,
D.
,
Dellago
,
C.
, and
Geissler
,
P. L.
, 2002
, “
Transition Path Sampling: Throwing Ropes Over Rough Mountain Passes, in the Dark
,” Annu. Rev. Phys. Chem.
,
53
(1
), pp. 291
–318
.10.1146/annurev.physchem.53.082301.113146130.
Dellago
,
C.
,
Bolhuis
,
P.
, and
Geissler
,
P. L.
, 2002
, “
Transition Path Sampling
,” Adv. Chem. Phys.
,
123
(1
), pp. 1–78.131.
Weinan
,
E.
,
Ren
,
W.
, and
Vanden-Eijnden
,
E.
, 2002
, “
String Method for the Study of Rare Events
,” Phys. Rev. B
,
66
(5
), p. 052301
.10.1103/PhysRevB.66.052301132.
Maragliano
,
L.
,
Fischer
,
A.
,
Vanden-Eijnden
,
E.
, and
Ciccotti
,
G.
, 2006
, “
String Method in Collective Variables: Minimum Free Energy Paths and Isocommittor Surfaces
,” J. Chem. Phys.
,
125
(2
), p. 024106
.10.1063/1.2212942133.
Weinan
,
E.
,
Ren
,
W.
, and
Vanden-Eijnden
,
E.
, 2007
, “
Simplified and Improved String Method for Computing the Minimum Energy Paths in Barrier-Crossing Events
,” J. Chem. Phys.
,
126
(16
), p. 164103
.10.1063/1.2720838134.
Pan
,
A. C.
,
Sezer
,
D.
, and
Roux
,
B.
, 2008
, “
Finding Transition Pathways Using the String Method With Swarms of Trajectories
,” J. Phys. Chem. B
,
112
(11
), pp. 3432
–3440
.10.1021/jp0777059135.
Farazmand
,
M.
, and
Sapsis
,
T. P.
, 2017
, “
A Variational Approach to Probing Extreme Events in Turbulent Dynamical Systems
,” Sci. Adv.
,
3
(9
), p. e1701533
.10.1126/sciadv.1701533136.
Ruelle
,
D.
, 1989
, Chaotic Evolution and Strange Attractors
, Vol.
1
,
Cambridge University Press
,
Cambridge, UK
.137.
Constantin
,
P.
,
Foias
,
C.
,
Nicolaenko
,
B.
, and
Temam
,
R.
, 1989
, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations
(Applied Mathematical Sciences, Vol.
70
), Springer, New York.138.
Dellnitz
,
M.
, and
Junge
,
O.
, 2004
, On the Approximation of Complicated Dynamical Behavior
,
Springer
,
New York
, pp. 400
–424
.139.
Chen
,
K. K.
,
Tu
,
J. H.
, and
Rowley
,
C. W.
, 2012
, “
Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses
,” J. Nonlinear Sci.
,
22
(6
), pp. 887
–915
.10.1007/s00332-012-9130-9140.
Hinze
,
M.
,
Pinnau
,
R.
,
Ulbrich
,
M.
, and
Ulbrich
,
S.
, 2008
, “
Optimization With PDE Constraints
,” Mathematical Modeling: Theory and Applications
, Vol.
23
,
Springer Science & Business Media
, Dordrecht, The Netherlands.141.
Herzog
,
R.
, and
Kunisch
,
K.
, 2010
, “
Algorithms for PDE-Constrained Optimization
,” GAMM-Mitteilungen
,
33
(2
), pp. 163
–176
.10.1002/gamm.201010013142.
Farazmand
,
M.
,
Kevlahan
,
N. K.-R.
, and
Protas
,
B.
, 2011
, “
Controlling the Dual Cascade of Two-Dimensional Turbulence
,” J. Fluid Mech.
,
668
, pp. 202
–222
.10.1017/S0022112010004635143.
Bertsekas
,
D. P.
, 2014
, Constrained Optimization and Lagrange Multiplier Methods
,
Academic Press
, New York.144.
Obukhov
,
A. M.
, 1983
, “
Kolmogorov Flow and Laboratory Simulation of It
,” Russ. Math. Surv.
,
38
(4
), pp. 113
–126
.10.1070/RM1983v038n04ABEH004207145.
Marchioro
,
C.
, 1986
, “
An Example of Absence of Turbulence for Any Reynolds Number
,” Commun. Math. Phys.
,
105
(1
), pp. 99
–106
.10.1007/BF01212343146.
Platt
,
N.
,
Sirovich
,
L.
, and
Fitzmaurice
,
N.
, 1991
, “
An Investigation of Chaotic Kolmogorov Flows
,” Phys. Fluids A
,
3
(4
), pp. 681
–696
.10.1063/1.858074147.
Foias
,
C.
,
Manley
,
O.
,
Rosa
,
R.
, and
Temam
,
R.
, 2001
, Navier–Stokes Equations and Turbulence
,
Cambridge University Press
,
Cambridge, UK
.148.
Chandler
,
G. J.
, and
Kerswell
,
R. R.
, 2013
, “
Invariant Recurrent Solutions Embedded in a Turbulent Two-Dimensional Kolmogorov Flow
,” J. Fluid Mech.
,
722
, pp. 554
–595
.10.1017/jfm.2013.122149.
Batchaev
,
A.
, and
Dovzhenko
,
V.
, 1983
, “
Laboratory Simulation of the Stability Loss of Periodic Zonal Flows
,” Akademiia Nauk SSSR Doklady
, Vol.
273
, Doklady, Moscow, Russia, pp. 582
–584
.150.
Burgess
,
J. M.
,
Bizon
,
C.
,
McCormick
,
W.
,
Swift
,
J.
, and
Swinney
,
H. L.
, 1999
, “
Instability of the Kolmogorov Flow in a Soap Film
,” Phys. Rev. E
,
60
(1
), p. 715
.10.1103/PhysRevE.60.715151.
Ouellette
,
N. T.
, and
Gollub
,
J. P.
, 2008
, “
Dynamic Topology in Spatiotemporal Chaos
,” Phys. Fluids
,
20
(6
), p. 064104
.10.1063/1.2948849152.
Suri
,
B.
,
Tithof
,
J.
,
Grigoriev
,
R. O.
, and
Schatz
,
M. F.
, 2017
, “
Forecasting Fluid Flows Using the Geometry of Turbulence
,” Phys. Rev. Lett.
,
118
(11
), p. 114501
.10.1103/PhysRevLett.118.114501153.
Majda
,
A.
,
Abramov
,
R. V.
, and
Grote
,
M. J.
, 2005
, Information Theory and Stochastics for Multiscale Nonlinear Systems
, Vol.
25
,
American Mathematical Society
, Providence, RI.154.
Kraichnan
,
R. H.
, 1971
, “
Inertial-Range Transfer in Two- and Three-Dimensional Turbulence
,” J. Fluid Mech.
,
47
(3
), pp. 525
–535
.10.1017/S0022112071001216155.
Moffatt
,
H. K.
, 2014
, “
Note on the Triad Interactions of Homogeneous Turbulence
,” J. Fluid Mech.
,
741
, p. R3.10.1017/jfm.2013.637156.
Stoker
,
J. J.
, 1958
, Water Waves: The Mathematical Theory With Applications
,
Wiley
, New York.157.
Nieto Borge
,
J. C.
,
RodrÍguez
,
G. R.
,
Hessner
,
K.
, and
González
,
P. I.
, 2004
, “
Inversion of Marine Radar Images for Surface Wave Analysis
,” J. Atmos. Oceanic Technol.
,
21
(8
), pp. 1291
–1300
.10.1175/1520-0426(2004)021<1291:IOMRIF>2.0.CO;2158.
Fu
,
T. C.
,
Fullerton
,
A. M.
,
Hackett
,
E. E.
, and
Merrill
,
C.
, 2011
, “
Shipboard Measurments of Ocean Waves
,” ASME
Paper No. OMAE2011-49894.10.1115/OMAE2011-49894159.
Story
,
W. R.
,
Fu
,
T. C.
, and
Hackett
,
E. E.
, 2011
, “
Radar Measurement of Ocean Waves
,” ASME
Paper No. OMAE2011-49895.10.1115/OMAE2011-49895160.
Nieto Borge
,
J. C.
,
Reichert
,
K.
, and
Hessner
,
K.
, 2013
, “
Detection of Spatio-Temporal Wave Grouping Properties by Using Temporal Sequences of X-Band Radar Images of the Sea Surface
,” Ocean Modell.
,
61
, pp. 21
–37
.10.1016/j.ocemod.2012.10.004161.
Benney
,
D. J.
, and
Newell
,
A. C.
, 1967
, “
The Propagation of Nonlinear Wave Envelopes
,” J. Math. Phys.
,
46
(1–4
), pp. 133
–139
.10.1002/sapm1967461133162.
Zakharov
,
V. E.
, 1968
, “
Stability of Periodic Waves of Finite Amplitude on the Surface of a Deep Fluid
,” J. Appl. Mech. Tech. Phys.
,
9
(2
), pp. 190
–194
.10.1007/BF00913182163.
Hasimoto
,
H.
, and
Ono
,
H.
, 1972
, “
Nonlinear Modulation of Gravity Waves
,” J. Phys. Soc. Jpn.
,
33
(3
), pp. 805
–811
.10.1143/JPSJ.33.805164.
Yuen
,
H. C.
, and
Lake
,
B. M.
, 1975
, “
Nonlinear Deep Water Waves: Theory and Experiment
,” Phys. Fluids
,
18
(8
), pp. 956
–960
.10.1063/1.861268165.
Dysthe
,
K. B.
, 1979
, “
Note on a Modification to the Nonlinear Schrödinger Equation for Application to Deep Water Waves
,” Proc. R. Soc. A
,
369
(1736
), pp. 105
–114
.10.1098/rspa.1979.0154166.
Trulsen
,
K.
,
Kliakhandler
,
I.
,
Dysthe
,
K. B.
, and
Velarde
,
M. G.
, 2000
, “
On Weakly Nonlinear Modulation of Waves on Deep Water
,” Phys. Fluids
,
12
(10
), pp. 2432
–2437
.10.1063/1.1287856167.
Ma
,
Y.-C.
, 1979
, “
The Perturbed Plane-Wave Solutions of the Cubic Schrödinger Equation
,” Stud. Appl. Math.
,
60
(1
), pp. 43
–58
.10.1002/sapm197960143168.
Akhmediev
,
N. N.
, and
Korneev
,
V. I.
, 1986
, “
Modulation Instability and Periodic Solutions of the Nonlinear Schrödinger Equation
,” Theor. Math. Phys.
,
69
(2
), pp. 1089
–1093
.10.1007/BF01037866169.
Peregrine
,
D.
, 1983
, “
Water Waves, Nonlinear Schrödinger Equations and Their Solutions
,” J. Aust. Math. Soc. Ser. B. Appl. Math.
,
25
(1
), pp. 16
–43
.10.1017/S0334270000003891170.
Akhmediev
,
N.
,
Ankiewicz
,
A.
, and
Soto-Crespo
,
J. M.
, 2009
, “
Rogue Waves and Rational Solutions of the Nonlinear Schrödinger Equation
,” Phys. Rev. E
,
80
, p. 026601
.10.1103/PhysRevE.80.026601171.
Baronio
,
F.
,
Chen
,
S.
,
Grelu
,
P.
,
Wabnitz
,
S.
, and
Conforti
,
M.
, 2015
, “
Baseband Modulation Instability as the Origin of Rogue Waves
,” Phys. Rev. A
,
91
, p. 033804
.10.1103/PhysRevA.91.033804172.
Zhao
,
L.-C.
, and
Ling
,
L.
, 2016
, “
Quantitative Relations Between Modulational Instability and Several Well-Known Nonlinear Excitations
,” J. Opt. Soc. Am. B
,
33
(5
), pp. 850
–856
.10.1364/JOSAB.33.000850173.
Wen
,
X.-Y.
,
Yan
,
Z.
, and
Yang
,
Y.
, 2016
, “
Dynamics of Higher-Order Rational Solitons for the Nonlocal Nonlinear Schrödinger Equation With the Self-Induced Parity-Time-Symmetric Potential
,” Chaos
,
26
(6
), p. 063123
.10.1063/1.4954767174.
Chen
,
S.
,
Baronio
,
F.
,
Soto-Crespo
,
J. M.
,
Grelu
,
P.
, and
Mihalache
,
D.
, 2017
, “
Versatile Rogue Waves in Scalar, Vector, and Multidimensional Nonlinear Systems
,” J. Phys. A: Math. Theor.
,
50
(46
), p. 463001
.10.1088/1751-8121/aa8f00175.
Bertola
,
M.
, and
Tovbis
,
A.
, 2013
, “
Universality for the Focusing Nonlinear Schrödinger Equation at the Gradient Catastrophe Point: Rational Breathers and Poles of the Tritronquée Solution to Painlevé I
,” Commun. Pure Appl. Math.
,
66
(5
), pp. 678
–752
.10.1002/cpa.21445176.
Tikan
,
A.
,
Billet
,
C.
,
El
,
G.
,
Tovbis
,
A.
,
Bertola
,
M.
,
Sylvestre
,
T.
,
Gustave
,
F.
,
Randoux
,
S.
,
Genty
,
G.
,
Suret
,
P.
, and
Dudley
,
J. M.
, 2017
, “
Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrödinger Equation
,” Phys. Rev. Lett.
,
119
(3
), p. 033901
.10.1103/PhysRevLett.119.033901177.
Chabchoub
,
A.
,
Hoffmann
,
N. P.
, and
Akhmediev
,
N.
, 2011
, “
Rogue Wave Observation in a Water Wave Tank
,” Phys. Rev. Lett.
,
106
(20
), p. 204502
.10.1103/PhysRevLett.106.204502178.
Chabchoub
,
A.
,
Hoffmann
,
N.
,
Onorato
,
M.
, and
Akhmediev
,
N.
, 2012
, “
Super Rogue Waves: Observation of a Higher-Order Breather in Water Waves
,” Phys. Rev. X
,
2
(1
), p. 011015
.10.1103/PhysRevX.2.011015179.
Chabchoub
,
A.
,
Akhmediev
,
N.
, and
Hoffmann
,
N.
, 2012
, “
Experimental Study of Spatiotemporally Localized Surface Gravity Water Waves
,” Phys. Rev. E
,
86
(1
), p. 016311
.10.1103/PhysRevE.86.016311180.
Chabchoub
,
A.
,
Kimmoun
,
O.
,
Branger
,
H.
,
Hoffmann
,
N.
,
Proment
,
D.
,
Onorato
,
M.
, and
Akhmediev
,
N.
, 2013
, “
Experimental Observation of Dark Solitons on the Surface of Water
,” Phys. Rev. Lett.
,
110
(12
), p. 124101
.10.1103/PhysRevLett.110.124101181.
Shemer
,
L.
, and
Alperovich
,
L.
, 2013
, “
Peregrine Breather Revisited
,” Phys. Fluids
,
25
(5
), p. 051701
.10.1063/1.4807055182.
Kimmoun
,
O.
,
Hsu
,
H. C.
,
Kibler
,
B.
, and
Chabchoub
,
A.
, 2017
, “
Nonconservative Higher-Order Hydrodynamic Modulation Instability
,” Phys. Rev. E
,
96
(2
), p. 022219
.10.1103/PhysRevE.96.022219183.
Dudley
,
J. M.
,
Dias
,
F.
,
Erkintalo
,
M.
, and
Genty
,
G.
, 2014
, “
Instabilities, Breathers and Rogue Waves in Optics
,” Nat. Photonics
,
8
(10
), p. 755
.10.1038/nphoton.2014.220184.
Närhi
,
M.
,
Wetzel
,
B.
,
Billet
,
C.
,
Toenger
,
S.
,
Sylvestre
,
T.
,
Merolla
,
J.-M.
,
Morandotti
,
R.
,
Dias
,
F.
,
Genty
,
G.
, and
Dudley
,
J. M.
, 2016
, “
Real-Time Measurements of Spontaneous Breathers and Rogue Wave Events in Optical Fibre Modulation Instability
,” Nat. Commun.
,
7
, p. 13675
.10.1038/ncomms13675185.
Chabchoub
,
A.
, 2016
, “
Tracking Breather Dynamics in Irregular Sea State Conditions
,” Phys. Rev. Lett.
,
117
(14
), p. 144103
.10.1103/PhysRevLett.117.144103186.
Cousins
,
W.
, and
Sapsis
,
T. P.
, 2015
, “
Unsteady Evolution of Localized Unidirectional Deep-Water Wave Groups
,” Phys. Rev. E
,
91
(6
), p. 063204
.10.1103/PhysRevE.91.063204187.
Cousins
,
W.
, and
Sapsis
,
T. P.
, 2016
, “
Reduced-Order Precursors of Rare Events in Unidirectional Nonlinear Water Waves
,” J. Fluid Mech.
,
790
(3
), pp. 368
–388
.10.1017/jfm.2016.13188.
Farazmand
,
M.
, and
Sapsis
,
T. P.
, 2017
, “
Reduced-Order Prediction of Rogue Waves in Two-Dimensional Deep-Water Waves
,” J. Comput. Phys.
,
340
, pp. 418
–434
.10.1016/j.jcp.2017.03.054189.
Ohta
,
Y.
, and
Yang
,
J.
, 2012
, “
Rogue Waves in the Davey-Stewartson—I: Equation
,” Phys. Rev. E
,
86
(3
), p. 036604
.10.1103/PhysRevE.86.036604190.
Dematteis
,
G.
,
Grafke
,
T.
, and
Vanden-Eijnden
,
E.
, 2018
, “
Rogue Waves and Large Deviations in Deep Sea
,” Proc. Natl. Acad. Sci.
,
115
(5
), pp. 855
–860
.10.1073/pnas.1710670115191.
Davison
,
A. C.
, and
Huser
,
R.
, 2015
, “
Statistics of Extremes
,” Annu. Rev. Stat. Appl.
,
2
(1
), pp. 203
–235
.10.1146/annurev-statistics-010814-020133192.
Benjamin
,
T. B.
, and
Feir
,
J. E.
, 1967
, “
The Disintegration of Wave Trains on Deep Water—Part 1: Theory
,” J. Fluid Mech.
,
27
(3
), pp. 417
–430
.10.1017/S002211206700045X193.
Drazen
,
A.
, 2000
, Political Economy in Macroeconomics
,
Princeton University Press
, Princeton, NJ.194.
Keizer
,
K.
,
Lindenberg
,
S.
, and
Steg
,
L.
, 2008
, “
The Spreading of Disorder
,” Science
,
322
(5908
), pp. 1681
–1685
.10.1126/science.1161405195.
Rand
,
D. G.
,
Arbesman
,
S.
, and
Christakis
,
N. A.
, 2011
, “
Dynamic Social Networks Promote Cooperation in Experiments With Humans
,” Proc. Natl. Acad. Sci.
,
108
(48
), pp. 19193
–19198
.10.1073/pnas.1108243108196.
Kloeden
,
P. E.
, and
Rasmussen
,
M.
, 2011
, Nonautonomous Dynamical Systems
, Vol.
176
,
American Mathematical Society
, Providence, RI.197.
Carvalho
,
A.
,
Langa
,
J. A.
,
Robinson
,
J.
, 2012
, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems
, Vol.
182
,
Springer Science & Business Media
, New York.Copyright © 2019 by ASME
You do not currently have access to this content.