Abstract

Various bio-inspired vibration isolators have been emerged in recent decades and applied successfully in the protection of sensitive components, improvement of operating comfort, enhancement of control accuracy, etc. They are generally developed by exploiting favorable nonlinearities in biological structures. The main contribution of this work is to provide a comprehensive review of recent studies on the bio-inspired isolators. The methodology of bio-inspired vibration isolation is proposed from the perspective of mechanics based on the elemental theory and design principles. The key isolation mechanisms are classified into three categories according to different dominant forces: stiffness adjustment mechanism, auxiliary mass mechanism, and damping mechanism, respectively. Some representative designs, performance analyses, and practical applications of each type of bio-inspired isolators are also provided. In bio-inspired isolators with variable stiffness, the inherent structural performances can be adjusted to deal with variation in external load. The auxiliary mass mechanism utilizes nonlinear inertial effects to achieve ultralow frequency vibration isolation. Unique damping mechanism of bio-inspired structures is often studied to protect devices and equipment from impact loads. Bio-inspired vibration methods can also be applied in active/semi-active control systems with advantages of low energy consumption and high robustness. Finally, the review ends with conclusions, which highlight resolved and unresolved issues and provide a brief outlook on future perspectives. This review aims to give a comprehensive understanding of bio-inspired isolation mechanism. It also provides guidance on designing new bio-inspired isolators for improving their vibration isolation performance.

References

1.
Gripp
,
J. A. B.
, and
Rade
,
D. A.
,
2018
, “
Vibration and Noise Control Using Shunted Piezoelectric Transducers: A Review
,”
Mech. Syst. Signal Process.
,
112
, pp.
359
383
.10.1016/j.ymssp.2018.04.041
2.
Liu
,
C.
,
Jing
,
X.
,
Daley
,
S.
, and
Li
,
F.
,
2015
, “
Recent Advances in Micro-Vibration Isolation
,”
Mech. Syst. Signal Process.
,
56–57
, pp.
55
80
.10.1016/j.ymssp.2014.10.007
3.
Makihara
,
K.
,
Onoda
,
J.
, and
Minesugi
,
K.
,
2006
, “
New Approach to Semi-Active Vibration Isolation to Improve the Pointing Performance of Observation Satellites
,”
Smart Mater. Struct.
,
15
(
2
), pp.
342
350
.10.1088/0964-1726/15/2/014
4.
Sun
,
Y.
,
Gong
,
D.
,
Zhou
,
J.
,
Sun
,
W.
, and
Xia
,
Z.
,
2019
, “
Low Frequency Vibration Control of Railway Vehicles Based on a High Static Low Dynamic Stiffness Dynamic Vibration Absorber
,”
Sci. China Technol. Sci.
,
62
(
1
), pp.
60
69
.10.1007/s11431-017-9300-5
5.
Shih
,
Y.-S.
, and
Wu
,
G.-Y.
,
2002
, “
Effect of Vibration on Fatigue Crack Growth of an Edge Crack for a Rectangular Plate
,”
Int. J. Fatigue
,
24
(
5
), pp.
557
566
.10.1016/S0142-1123(01)00110-4
6.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.10.1016/j.jsv.2008.01.014
7.
Ledezma-Ramírez
,
D. F.
,
Tapia-González
,
P. E.
,
Ferguson
,
N.
,
Brennan
,
M.
, and
Tang
,
B.
,
2019
, “
Recent Advances in Shock Vibration Isolation: An Overview and Future Possibilities
,”
Appl. Mech. Rev.
,
71
(
6
).10.1115/1.4044190
8.
Rashid
,
A.
, and
Mihai Nicolescu
,
C.
,
2006
, “
Active Vibration Control in Palletised Workholding System for Milling
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1626
1636
.10.1016/j.ijmachtools.2005.08.020
9.
Liu
,
Y.
,
Matsuhisa
,
H.
, and
Utsuno
,
H.
,
2008
, “
Semi-Active Vibration Isolation System With Variable Stiffness and Damping Control
,”
J. Sound Vib.
,
313
(
1–2
), pp.
16
28
.10.1016/j.jsv.2007.11.045
10.
Kandasamy
,
R.
,
Cui
,
F.
,
Townsend
,
N.
,
Foo
,
C. C.
,
Guo
,
J.
,
Shenoi
,
A.
, and
Xiong
,
Y.
,
2016
, “
A Review of Vibration Control Methods for Marine Offshore Structures
,”
Ocean Eng.
,
127
, pp.
279
297
.10.1016/j.oceaneng.2016.10.001
11.
Niu
,
J.
,
Song
,
K.
, and
Lim
,
C. W.
,
2005
, “
On Active Vibration Isolation of Floating Raft System
,”
J. Sound Vib.
,
285
(
1–2
), pp.
391
406
.10.1016/j.jsv.2004.08.013
12.
Oh
,
H.-U.
,
Lee
,
K.-J.
, and
Jo
,
M.-S.
,
2013
, “
A Passive Launch and on-Orbit Vibration Isolation System for the Spaceborne Cryocooler
,”
Aerosp. Sci. Technol.
,
28
(
1
), pp.
324
331
.10.1016/j.ast.2012.11.013
13.
Zhou
,
J.
,
Wang
,
X.
,
Xu
,
D.
, and
Bishop
,
S.
,
2015
, “
Nonlinear Dynamic Characteristics of a Quasi-Zero Stiffness Vibration Isolator With Cam–Roller–Spring Mechanisms
,”
J. Sound Vib.
,
346
, pp.
53
69
.10.1016/j.jsv.2015.02.005
14.
Zhou
,
J.
,
Xu
,
D.
, and
Bishop
,
S.
,
2015
, “
A Torsion Quasi-Zero Stiffness Vibration Isolator
,”
J. Sound Vib.
,
338
, pp.
121
133
.10.1016/j.jsv.2014.10.027
15.
Xu
,
D.
,
Yu
,
Q.
,
Zhou
,
J.
, and
Bishop
,
S. R.
,
2013
, “
Theoretical and Experimental Analyses of a Nonlinear Magnetic Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
332
(
14
), pp.
3377
3389
.10.1016/j.jsv.2013.01.034
16.
Yan
,
B.
,
Wang
,
Z.
,
Ma
,
H.
,
Bao
,
H.
,
Wang
,
K.
, and
Wu
,
C.
,
2021
, “
A Novel Lever-Type Vibration Isolator With Eddy Current Damping
,”
J. Sound Vib.
,
494
, p.
115862
.10.1016/j.jsv.2020.115862
17.
Yan
,
B.
,
Ma
,
H.
,
Zhang
,
L.
,
Wu
,
C.
, and
Zhang
,
X.
,
2020
, “
Electromagnetic Shunt Damping for Shock Isolation of Nonlinear Vibration Isolators
,”
J. Sound Vib.
,
479
, p.
115370
.10.1016/j.jsv.2020.115370
18.
Wang
,
X.
,
Zhou
,
J.
,
Xu
,
D.
,
Ouyang
,
H.
, and
Duan
,
Y.
,
2017
, “
Force Transmissibility of a Two-Stage Vibration Isolation System With Quasi-Zero Stiffness
,”
Nonlinear Dyn.
,
87
(
1
), pp.
633
646
.10.1007/s11071-016-3065-x
19.
Wang
,
K.
,
Zhou
,
J.
, and
Xu
,
D.
,
2017
, “
Sensitivity Analysis of Parametric Errors on the Performance of a Torsion Quasi-Zero-Stiffness Vibration Isolator
,”
Int. J. Mech. Sci.
,
134
, pp.
336
346
.10.1016/j.ijmecsci.2017.10.026
20.
Yao
,
Y.
,
Li
,
H.
,
Li
,
Y.
, and
Wang
,
X.
,
2020
, “
Analytical and Experimental Investigation of a High-Static-Low-Dynamic Stiffness Isolator With Cam-Roller-Spring Mechanism
,”
Int. J. Mech. Sci.
,
186
, p.
105888
.10.1016/j.ijmecsci.2020.105888
21.
Yan
,
B.
,
Ma
,
H.
,
Zhao
,
C.
,
Wu
,
C.
,
Wang
,
K.
, and
Wang
,
P.
,
2018
, “
A Vari-Stiffness Nonlinear Isolator With Magnetic Effects: Theoretical Modeling and Experimental Verification
,”
Int. J. Mech. Sci.
,
148
, pp.
745
755
.10.1016/j.ijmecsci.2018.09.031
22.
Tang
,
B.
, and
Brennan
,
M. J.
,
2014
, “
On the Shock Performance of a Nonlinear Vibration Isolator With High-Static-Low-Dynamic-Stiffness
,”
Int. J. Mech. Sci.
,
81
, pp.
207
214
.10.1016/j.ijmecsci.2014.02.019
23.
Dong
,
G.
,
Zhang
,
X.
,
Xie
,
S.
,
Yan
,
B.
, and
Luo
,
Y.
,
2017
, “
Simulated and Experimental Studies on a High-Static-Low-Dynamic Stiffness Isolator Using Magnetic Negative Stiffness Spring
,”
Mech. Syst. Signal Process.
,
86
, pp.
188
203
.10.1016/j.ymssp.2016.09.040
24.
Ye
,
K.
,
Ji
,
J. C.
, and
Brown
,
T.
,
2020
, “
Design of a Quasi-Zero Stiffness Isolation System for Supporting Different Loads
,”
J. Sound Vib.
,
471
, p.
115198
.10.1016/j.jsv.2020.115198
25.
Zheng
,
Y.
,
Zhang
,
X.
,
Luo
,
Y.
,
Zhang
,
Y.
, and
Xie
,
S.
,
2018
, “
Analytical Study of a Quasi-Zero Stiffness Coupling Using a Torsion Magnetic Spring With Negative Stiffness
,”
Mech. Syst. Signal Process.
,
100
, pp.
135
151
.10.1016/j.ymssp.2017.07.028
26.
Zhang
,
F.
,
Xu
,
M.
,
Shao
,
S.
, and
Xie
,
S.
,
2020
, “
A New High-Static-Low-Dynamic Stiffness Vibration Isolator Based on Magnetic Negative Stiffness Mechanism Employing Variable Reluctance Stress
,”
J. Sound Vib.
,
476
, p.
115322
.10.1016/j.jsv.2020.115322
27.
Wang
,
Q.
,
Zhou
,
J.
,
Xu
,
D.
, and
Ouyang
,
H.
,
2020
, “
Design and Experimental Investigation of Ultra-Low Frequency Vibration Isolation During Neonatal Transport
,”
Mech. Syst. Signal Process.
,
139
, p.
106633
.10.1016/j.ymssp.2020.106633
28.
Yan
,
B.
,
Ma
,
H.
,
Jian
,
B.
,
Wang
,
K.
, and
Wu
,
C.
,
2019
, “
Nonlinear Dynamics Analysis of a bi-State Nonlinear Vibration Isolator With Symmetric Permanent Magnets
,”
Nonlinear Dyn.
,
97
(
4
), pp.
2499
2519
.10.1007/s11071-019-05144-w
29.
Yan
,
B.
,
Ma
,
H.
,
Zheng
,
W.
,
Jian
,
B.
,
Wang
,
K.
, and
Wu
,
C.
,
2019
, “
Nonlinear Electromagnetic Shunt Damping for Nonlinear Vibration Isolators
,”
IEEE/ASME Trans. Mechatronics
,
24
(
4
), pp.
1851
1860
.10.1109/TMECH.2019.2928583
30.
Carrella
,
A.
,
Brennan
,
M. J.
,
Kovacic
,
I.
, and
Waters
,
T. P.
,
2009
, “
On the Force Transmissibility of a Vibration Isolator With Quasi-Zero-Stiffness
,”
J. Sound Vib.
,
322
(
4–5
), pp.
707
717
.10.1016/j.jsv.2008.11.034
31.
Wu
,
Z.
,
Jing
,
X.
,
Bian
,
J.
,
Li
,
F.
, and
Allen
,
R.
,
2015
, “
Vibration Isolation by Exploring Bio-Inspired Structural Nonlinearity
,”
Bioinspiration Biomimetics
,
10
(
5
), p.
056015
.10.1088/1748-3190/10/5/056015
32.
Robertson
,
W. S.
,
Kidner
,
M. R. F.
,
Cazzolato
,
B. S.
, and
Zander
,
A. C.
,
2009
, “
Theoretical Design Parameters for a Quasi-Zero Stiffness Magnetic Spring for Vibration Isolation
,”
J. Sound Vib.
,
326
(
1–2
), pp.
88
103
.10.1016/j.jsv.2009.04.015
33.
Jiang
,
G.
,
Jing
,
X.
, and
Guo
,
Y.
,
2020
, “
A Novel Bio-Inspired Multi-Joint Anti-Vibration Structure and Its Nonlinear HSLDS Properties
,”
Mech. Syst. Signal Process.
,
138
, p.
106552
.10.1016/j.ymssp.2019.106552
34.
Yang
,
H. T.
,
Kwon
,
I. Y.
,
Randall
,
C. J.
,
Hansma
,
P. K.
, and
Ly
,
F. S.
,
2019
, “
Preliminary Design, Experiment, and Numerical Study of a Prototype Hydraulic Bio-Inspired Damper
,”
J. Sound Vib.
,
459
, p. 114845.10.1016/j.jsv.2019.07.011
35.
Yan
,
G.
,
Wang
,
S.
,
Zou
,
H.
,
Zhao
,
L.
,
Gao
,
QHua.
, and
Zhang
,
W.
,
2020
, “
Bio-Inspired Polygonal Skeleton Structure for Vibration Isolation: Design, Modelling, and Experiment
,”
Sci. China Technol. Sci.
,
63
(
12
), pp.
2617
2630
.10.1007/s11431-020-1568-8
36.
Dai
,
H.
,
Jing
,
X.
,
Wang
,
Y.
,
Yue
,
X.
, and
Yuan
,
J.
,
2018
, “
Post-Capture Vibration Suppression of Spacecraft Via a Bio-Inspired Isolation System
,”
Mech. Syst. Signal Process.
,
105
, pp.
214
240
.10.1016/j.ymssp.2017.12.015
37.
Jing
,
X.
,
Zhang
,
L.
,
Feng
,
X.
,
Sun
,
B.
, and
Li
,
Q.
,
2019
, “
A Novel Bio-Inspired Anti-Vibration Structure for Operating Hand-Held Jackhammers
,”
Mech. Syst. Signal Process.
,
118
, pp.
317
339
.10.1016/j.ymssp.2018.09.004
38.
Wang
,
Y.
,
Jing
,
X.
, and
Guo
,
Y.
,
2019
, “
Nonlinear Analysis of a Bio-Inspired Vertically Asymmetric Isolation System Under Different Structural Constraints
,”
Nonlinear Dyn.
,
95
(
1
), pp.
445
464
.10.1007/s11071-018-4575-5
39.
Bian
,
J.
, and
Jing
,
X.
,
2019
, “
Superior Nonlinear Passive Damping Characteristics of the Bio-Inspired Limb-Like or X-Shaped Structure
,”
Mech. Syst. Signal Process.
,
125
, pp.
21
51
.10.1016/j.ymssp.2018.02.014
40.
Dai
,
H.
,
Jing
,
X.
,
Sun
,
C.
,
Wang
,
Y.
, and
Yue
,
X.
,
2018
, “
Accurate Modeling and Analysis of a Bio-Inspired Isolation System: With Application to On-Orbit Capture
,”
Mech. Syst. Signal Process.
,
109
, pp.
111
133
.10.1016/j.ymssp.2018.02.048
41.
Dai
,
H.
,
Cao
,
X.
,
Jing
,
X.
,
Wang
,
X.
, and
Yue
,
X.
,
2020
, “
Bio-Inspired Anti-Impact Manipulator for Capturing Non-Cooperative Spacecraft: Theory and Experiment
,”
Mech. Syst. Signal Process.
,
142
, p.
106785
.10.1016/j.ymssp.2020.106785
42.
Wang
,
Y.
, and
Jing
,
X.
,
2019
, “
Nonlinear Stiffness and Dynamical Response Characteristics of an Asymmetric X-Shaped Structure
,”
Mech. Syst. Signal Process.
,
125
, pp.
142
169
.10.1016/j.ymssp.2018.03.045
43.
Gatti
,
G.
,
2019
, “
A K-Shaped Spring Configuration to Boost Elastic Potential Energy
,”
Smart Mater. Struct.
,
28
(
7
), p.
077002
.10.1088/1361-665X/ab1ec8
44.
Gatti
,
G.
,
2020
, “
Statics and Dynamics of a Nonlinear Oscillator With Quasi-Zero Stiffness Behaviour for Large Deflections
,”
Commun. Nonlinear Sci. Numer. Simul.
,
83
, p.
105143
.10.1016/j.cnsns.2019.105143
45.
Yoon
,
S.-H.
,
Roh
,
J.-E.
, and
Kim
,
K. L.
,
2009
, “
Woodpecker-Inspired Shock Isolation by Microgranular Bed
,”
J. Phys. D Appl. Phys.
,
42
(
3
), p.
035501
.10.1088/0022-3727/42/3/035501
46.
Abo Sabah
,
S. H.
,
Kueh
,
A. B. H.
, and
Al-Fasih
,
M. Y.
,
2017
, “
Comparative Low-Velocity Impact Behavior of Bio-Inspired and Conventional Sandwich Composite Beams
,”
Compos. Sci. Technol.
,
149
, pp.
64
74
.10.1016/j.compscitech.2017.06.014
47.
Pan
,
H.
,
Jing
,
X.
,
Sun
,
W.
, and
Gao
,
H.
,
2018
, “
A Bioinspired Dynamics-Based Adaptive Tracking Control for Nonlinear Suspension Systems
,”
IEEE Trans. Control Syst. Technol.
,
26
(
3
), pp.
903
914
.10.1109/TCST.2017.2699158
48.
Sielmann
,
H.
,
1959
,
My Year With the Woodpeckers [M]
,
Barrie & Rockliff
,
London, UK
.
49.
Sun
,
X.
,
Jing
,
X.
,
Xu
,
J.
, and
Cheng
,
L.
,
2014
, “
Vibration Isolation Via a Scissor-Like Structured Platform
,”
J. Sound Vib.
,
333
(
9
), pp.
2404
2420
.10.1016/j.jsv.2013.12.025
50.
Sun
,
X.
, and
Jing
,
X.
,
2016
, “
Analysis and Design of a Nonlinear Stiffness and Damping System With a Scissor-Like Structure
,”
Mech. Syst. Signal Process.
,
66–67
, pp.
723
742
.10.1016/j.ymssp.2015.05.026
51.
Hu
,
F.
, and
Jing
,
X.
,
2018
, “
A 6-DOF Passive Vibration Isolator Based on Stewart Structure With X-Shaped Legs
,”
Nonlinear Dyn.
,
91
(
1
), pp.
157
185
.10.1007/s11071-017-3862-x
52.
Sun
,
B.
, and
Jing
,
X.
,
2017
, “
A Tracked Robot With Novel Bio-Inspired Passive “Legs”
,”
Rob. Biomimetics
,
4
(
1
), p.
18
.10.1186/s40638-017-0070-6
53.
Sun
,
X.
, and
Jing
,
X.
,
2016
, “
A Nonlinear Vibration Isolator Achieving High-Static-Low-Dynamic Stiffness and Tunable Anti-Resonance Frequency Band
,”
Mech. Syst. Signal Process.
,
80
, pp.
166
188
.10.1016/j.ymssp.2016.04.011
54.
Wang
,
X.
,
Yue
,
X.
,
Dai
,
H.
, and
Yuan
,
J.
,
2020
, “
Vibration Suppression for Post-Capture Spacecraft Via a Novel Bio-Inspired Stewart Isolation System
,”
Acta Astronaut.
,
168
, pp.
1
22
.10.1016/j.actaastro.2019.11.033
55.
Wang
,
Y.
,
Jing
,
X.
,
Dai
,
H.
, and
Li
,
F.-M.
,
2019
, “
Subharmonics and Ultra-Subharmonics of a Bio-Inspired Nonlinear Isolation System
,”
Int. J. Mech. Sci.
,
152
, pp.
167
184
.10.1016/j.ijmecsci.2018.12.054
56.
Wu
,
Z.
,
Jing
,
X.
,
Sun
,
B.
, and
Li
,
F.
,
2016
, “
A 6DOF Passive Vibration Isolator Using X-Shape Supporting Structures
,”
J. Sound Vib.
,
380
, pp.
90
111
.10.1016/j.jsv.2016.06.004
57.
Zhao
,
Y.
, and
Meng
,
G.
,
2020
, “
A Bio-Inspired Semi-Active Vibration Isolator With Variable-Stiffness Dielectric Elastomer: Design and Modeling
,”
J. Sound Vib.
,
485
, p.
115592
.10.1016/j.jsv.2020.115592
58.
Feng
,
X.
, and
Jing
,
X.
,
2019
, “
Human Body Inspired Vibration Isolation: Beneficial Nonlinear Stiffness, Nonlinear Damping and Nonlinear Inertia
,”
Mech. Syst. Signal Process.
,
117
, pp.
786
812
.10.1016/j.ymssp.2018.08.040
59.
Feng
,
X.
,
Jing
,
X.
,
Xu
,
Z.
, and
Guo
,
Y.
,
2019
, “
Bio-Inspired Anti-Vibration With Nonlinear Inertia Coupling
,”
Mech. Syst. Signal Process.
,
124
, pp.
562
595
.10.1016/j.ymssp.2019.02.001
60.
Kim
,
G. W.
, and
Kang
,
J.
,
2019
, “
The V-Shaped Band-Stop Vibration Isolator Inspired by Middle Ear
,”
Appl. Acoust.
,
150
, pp.
162
168
.10.1016/j.apacoust.2019.02.013
61.
Deng
,
T.
,
Wen
,
G.
,
Ding
,
H.
,
Lu
,
Z.-Q.
, and
Chen
,
L.-Q.
,
2020
, “
A Bio-Inspired Isolator Based on Characteristics of Quasi-Zero Stiffness and Bird Multi-Layer Neck
,”
Mech. Syst. Signal Process.
,
145
, p.
106967
.10.1016/j.ymssp.2020.106967
62.
Bian
,
J.
, and
Jing
,
X.
,
2014
, “
Biomimetic Design of Woodpecker for Shock and Vibration Protection
,” Proceedings of the IEEE International Conference on Robotics and Biomimetics (
ROBIO 2014
),
Bali, Indonesia
, Dec. 5–10, pp.
2238
2243
.10.1109/ROBIO.2014.7090670
63.
Li
,
H.
,
Yang
,
H. T.
,
Kwon
,
I. Y.
, and
Ly
,
F. S.
,
2019
, “
Bio-Inspired Passive Base Isolator With Tuned Mass Damper Inerter for Structural Control
,”
Smart Mater. Struct.
,
28
(
10
), p.
105008
.10.1088/1361-665X/ab3239
64.
Kwon
,
I. Y.
,
Yang
,
H. T.
,
Hansma
,
P. K.
, and
Randall
,
C.
,
2016
, “
Implementable Bio-Inspired Passive Negative Spring Actuator for Full-Scale Structural Control Under Seismic Excitation
,”
J. Struct. Eng.-ASCE
,
142
(
1
), p.
04015079
.10.1061/(ASCE)ST.1943-541X.0001323
65.
Yoon
,
S.-H.
, and
Park
,
S.
,
2011
, “
A Mechanical Analysis of Woodpecker Drumming and Its Application to Shock-Absorbing Systems
,”
Bioinspiration Biomimetics
,
6
(
1
), p.
016003
.10.1088/1748-3182/6/1/016003
66.
Pan
,
H.
,
Jing
,
X.
,
Sun
,
W.
, and
Li
,
Z.
,
2018
, “
Analysis and Design of a Bioinspired Vibration Sensor System in Noisy Environment
,”
IEEE/ASME Trans. Mechatronics
,
23
(
2
), pp.
845
855
.10.1109/TMECH.2018.2803284
67.
Sun
,
X.
, and
Jing
,
X.
,
2015
, “
Multi-Direction Vibration Isolation With Quasi-Zero Stiffness by Employing Geometrical Nonlinearity
,”
Mech. Syst. Signal Process.
,
62–63
, pp.
149
163
.10.1016/j.ymssp.2015.01.026
68.
Preumont
,
A.
,
Horodinca
,
M.
,
Romanescu
,
I.
,
de Marneffe
,
B.
,
Avraam
,
M.
,
Deraemaeker
,
A.
,
Bossens
,
F.
, and
Abu Hanieh
,
A.
,
2007
, “
A Six-Axis Single-Stage Active Vibration Isolator Based on Stewart Platform
,”
J. Sound Vib.
,
300
(
3–5
), pp.
644
661
.10.1016/j.jsv.2006.07.050
69.
Zhou
,
J.
,
Xiao
,
Q.
,
Xu
,
D.
,
Ouyang
,
H.
, and
Li
,
Y.
,
2017
, “
A Novel Quasi-Zero-Stiffness Strut and Its Applications in Six-Degree-of-Freedom Vibration Isolation Platform
,”
J. Sound Vib.
,
394
, pp.
59
74
.10.1016/j.jsv.2017.01.021
70.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
301
(
3–5
), pp.
678
689
.10.1016/j.jsv.2006.10.011
71.
Carrella
,
A.
,
Brennan
,
M. J.
,
Waters
,
T. P.
, and
Lopes
,
V.
,
2012
, “
Force and Displacement Transmissibility of a Nonlinear Isolator With High-Static-Low-Dynamic-Stiffness
,”
Int. J. Mech. Sci.
,
55
(
1
), pp.
22
29
.10.1016/j.ijmecsci.2011.11.012
72.
Zhang
,
W.
, and
Zhao
,
J.
,
2016
, “
Analysis on Nonlinear Stiffness and Vibration Isolation Performance of Scissor-Like Structure With Full Types
,”
Nonlinear Dyn.
,
86
(
1
), pp.
17
36
.10.1007/s11071-016-2869-z
73.
Yan
,
G.
,
Zou
,
H.-X.
,
Wang
,
S.
,
Zhao
,
L.-C.
,
Gao
,
Q.-H.
,
Tan
,
T.
, and
Zhang
,
W.-M.
,
2020
, “
Large Stroke Quasi-Zero Stiffness Vibration Isolator Using Three-Link Mechanism
,”
J. Sound Vib.
,
478
, p.
115344
.10.1016/j.jsv.2020.115344
74.
Pete
,
A. E.
,
Kress
,
D.
,
Dimitrov
,
M. A.
, and
Lentink
,
D.
,
2015
, “
The Role of Passive Avian Head Stabilization in Flapping Flight
,”
J. R. Soc., Interface
,
12
(
110
), p.
0508
.10.1098/rsif.2015.0508
75.
Troje
,
N. F.
, and
Frost
,
B. J.
,
2000
, “
Head-Bobbing in Pigeons: How Stable is the Hold Phase?
,”
J. Exp. Biol.
,
203
(
5
), p.
935
.https://pubmed.ncbi.nlm.nih.gov/10667977/
76.
Dunlap
,
K.
, and
Mowrer
,
O. H.
,
1930
, “
Head Movements and Eye Functions of Birds
,”
J. Comp. Psychol.
,
11
(
1
), pp.
99
113
.10.1037/h0075905
77.
Wedel
,
M.
, and
Sanders
,
R.
,
2002
, “
Osteological Correlates of Cervical Musculature in Aves and Sauropoda (Dinosauria: Saurischia), With Comments on the Cervical Ribs of Apatosaurus
,”
PaleoBios
,
22
.https://www.researchgate.net/publication/237246215_Osteological_correlates_of_cervical_musculature_in_Aves_and_Sauropoda_Dinosauria_Saurischia_with_comments_on_the_cervical_ribs_of_Apatosaurus
78.
Wang
,
H.
,
Fan
,
S.
,
Ni
,
F.
, and
Liu
,
H.
,
2016
, “
Biologically Inspired Guidelines for the Design of the Hyper-Dexterous Manipulator
,”
Proceedings of the IEEE International Conference on Mechatronics and Automation
, Harbin, China, Aug. 7–10, pp.
641
646
.10.1109/ICMA.2016.7558638
79.
Krings
,
M.
,
Nyakatura
,
J. A.
,
Fischer
,
M. S.
, and
Wagner
,
H.
,
2014
, “
The Cervical Spine of the American Barn Owl (Tyto Furcata Pratincola): I. Anatomy of the Vertebrae and Regionalization in Their S-Shaped Arrangement
,”
PLoS One
,
9
(
3
), pp.
e91653
e91653
.10.1371/journal.pone.0091653
80.
Hao
,
Z.
, and
Cao
,
Q.
,
2015
, “
The Isolation Characteristics of an Archetypal Dynamical Model With Stable-Quasi-Zero-Stiffness
,”
J. Sound Vib.
,
340
, pp.
61
79
.10.1016/j.jsv.2014.11.038
81.
Kovacic
,
I.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2008
, “
A Study of a Nonlinear Vibration Isolator With a Quasi-Zero Stiffness Characteristic
,”
J. Sound Vib.
,
315
(
3
), pp.
700
711
.10.1016/j.jsv.2007.12.019
82.
Liu
,
C.
,
Yu
,
K.
, and
Tang
,
J.
,
2020
, “
New Insights Into the Damping Characteristics of a Typical Quasi-Zero-Stiffness Vibration Isolator
,”
Int. J. Non-Linear Mech.
,
124
, p.
103511
.10.1016/j.ijnonlinmec.2020.103511
83.
Lu
,
Z.
,
Brennan
,
M.
,
Ding
,
H.
, and
Chen
,
L.
,
2019
, “
High-Static-Low-Dynamic-Stiffness Vibration Isolation Enhanced by Damping Nonlinearity
,”
Sci. China Technol. Sci.
,
62
(
7
), pp.
1103
1110
.10.1007/s11431-017-9281-9
84.
Ortega
,
J. D.
,
Fehlman
,
L. A.
, and
Farley
,
C. T.
,
2008
, “
Effects of Aging and Arm Swing on the Metabolic Cost of Stability in Human Walking
,”
J. Biomech.
,
41
(
16
), pp.
3303
3308
.10.1016/j.jbiomech.2008.06.039
85.
Bauby
,
C. E.
, and
Kuo
,
A. D.
,
2000
, “
Active Control of Lateral Balance in Human Walking
,”
J. Biomech.
,
33
(
11
), pp.
1433
1440
.10.1016/S0021-9290(00)00101-9
86.
Young
,
P. M. M.
,
Wilken
,
J. M.
, and
Dingwell
,
J. B.
,
2012
, “
Dynamic Margins of Stability During Human Walking in Destabilizing Environments
,”
J. Biomech.
,
45
(
6
), pp.
1053
1059
.10.1016/j.jbiomech.2011.12.027
87.
Liu
,
C.
,
Jing
,
X.
, and
Chen
,
Z.
,
2016
, “
Band Stop Vibration Suppression Using a Passive X-Shape Structured Lever-Type Isolation System
,”
Mech. Systems Signal Processing
,
68
, pp.
342
353
.10.1016/j.ymssp.2015.07.018
88.
Liu
,
C.
,
Jing
,
X.
, and
Li
,
F.
,
2015
, “
Vibration Isolation Using a Hybrid Lever-Type Isolation System With an X-Shape Supporting Structure
,”
Int. J. Mech. Sci.
,
98
, pp.
169
177
.10.1016/j.ijmecsci.2015.04.012
89.
Yilmaz
,
C.
, and
Kikuchi
,
N.
,
2006
, “
Analysis and Design of Passive Band-Stop Filter-Type Vibration Isolators for Low-Frequency Applications
,”
J. Sound Vib.
,
291
(
3–5
), pp.
1004
1028
.10.1016/j.jsv.2005.07.019
90.
Yilmaz
,
C.
, and
Kikuchi
,
N.
,
2006
, “
Analysis and Design of Passive Low-Pass Filter-Type Vibration Isolators Considering Stiffness and Mass Limitations
,”
J. Sound Vib.
,
293
(
1–2
), pp.
171
195
.10.1016/j.jsv.2005.09.016
91.
Beecher
,
W. J.
,
1953
, “
Feeding Adaptations, and Systematics in the Avian Order Piciformes
,”
J. Washington Acad. Sci.
,
43
, pp.
293
299
.https://www.biodiversitylibrary.org/part/101788
92.
Bock
,
W. J.
,
1964
, “
Kinetics of the Avian Skull
,”
J. Morphol.
,
114
(
1
), pp.
1
41
.10.1002/jmor.1051140102
93.
May
,
P. A.
,
Fuster
,
J. M.
,
Newman
,
P.
, and
Hirschman
,
A.
,
1976
, “
Woodpeckers and Head Injury
,”
Lancet
,
307
(
7957
), pp.
454
455
.10.1016/S0140-6736(76)91477-X
94.
Oda
,
J.
,
Sakamoto
,
J.
, and
Sakano
,
K.
,
2006
, “
Mechanical Evaluation of the Skeletal Structure and Tissue of the Woodpecker and Its Shock Absorbing System
,”
JSME Int. J. Ser. A-Solid Mech. Mater. Eng.
,
49
(
3
), pp.
390
396
.10.1299/jsmea.49.390
95.
Liu
,
Y.
,
Qiu
,
X.
,
Yu
,
T.
,
Tao
,
J.
, and
Cheng
,
Z.
,
2015
, “
How Does a Woodpecker Work? An Impact Dynamics Approach
,”
Acta Mech. Sin.
,
31
(
2
), pp.
181
190
.10.1007/s10409-015-0399-4
96.
Zhu
,
Z.
,
Wu
,
C.
, and
Zhang
,
W.
,
2014
, “
Frequency Analysis and Anti-Shock Mechanism of Woodpecker's Head Structure
,”
J. Bionic Eng.
,
11
(
2
), pp.
282
287
.10.1016/S1672-6529(14)60045-7
97.
Liu
,
Y.
,
Qiu
,
X.
,
Zhang
,
X.
, and
Yu
,
T.
,
2015
, “
Response of Woodpecker's Head During Pecking Process Simulated by Material Point Method
,”
PLoS One
,
10
(
4
), p. e0122677.10.1371/journal.pone.0122677
98.
Gibson
,
L. J.
,
2006
, “
Woodpecker Pecking: How Woodpeckers Avoid Brain Injury
,”
J. Zool.
,
270
(
3
), pp.
462
465
.10.1111/j.1469-7998.2006.00166.x
99.
Zhou
,
P.
,
Kong
,
X. Q.
,
Wu
,
C. W.
, and
Chen
,
Z.
,
2009
, “
The Novel Mechanical Property of Tongue of a Woodpecker
,”
J. Bionic Eng.
,
6
(
3
), pp.
214
218
.10.1016/S1672-6529(08)60126-2
100.
Wang
,
L.
,
Cheung
,
J. T.
,
Pu
,
F.
,
Li
,
D.
,
Zhang
,
M.
, and
Fan
,
Y. J. P. O.
,
2011
,
Why Do Woodpeckers Resist Head Impact Injury: A Biomechanical Investigation
, PloS One,
6
(
10
), pp.
1
8
.
101.
Wang
,
L. Z.
,
Zhang
,
H. Q.
, and
Fan
,
Y. B.
,
2011
, “
Comparative Study of the Mechanical Properties, Micro-Structure, and Composition of the Cranial and Beak Bones of the Great Spotted Woodpecker and the Lark Bird
,”
Sci. China Life Sci.
,
54
(
11
), pp.
1036
1041
.10.1007/s11427-011-4242-2
102.
Wang
,
L.
,
Lu
,
S.
,
Liu
,
XYu.
,
Niu
,
X.
,
Wang
,
C.
,
Ni
,
YKun.
,
Zhao
,
MYa.
,
Feng
,
C.
,
Zhang
,
M.
, and
Fan
,
YBo.
,
2013
, “
Biomechanism of Impact Resistance in the Woodpecker's Head and Its Application
,”
Sci. China Technol. Sci.
,
56
(
8
), pp.
715
719
.10.1007/s11427-013-4523-z
103.
Wang
,
L.
,
Niu
,
X.
,
Ni
,
Y.
,
Xu
,
P.
,
Liu
,
X.
,
Lu
,
S.
,
Zhang
,
M.
, and
Fan
,
Y.
,
2013
, “
Effect of Microstructure of Spongy Bone in Different Parts of Woodpecker's Skull on Resistance to Impact Injury
,”
J. Nanomaterials
,
2013
, p.
17
.10.1155/2013/924564
104.
Zhu
,
Z.
,
Zhang
,
W.
, and
Wu
,
C.
,
2014
, “
Energy Conversion in Woodpecker on Successive Peckings and Its Role on Anti-Shock Protection of Brain
,”
Sci. China Technol. Sci.
,
57
(
7
), pp.
1269
1275
.10.1007/s11431-014-5582-5
105.
Yoon
,
S. H.
, and
Kim
,
K. L.
,
2006
, “
Passive Low Pass Filtering Effect of Mechanical Vibrations by a Granular Bed Composed of Microglass Beads
,”
Appl. Phys. Lett.
,
89
(
2
), p.
021906
.10.1063/1.2220012
106.
Fantner
,
G. E.
,
Hassenkam
,
T.
,
Kindt
,
J. H.
,
Weaver
,
J. C.
,
Birkedal
,
H.
,
Pechenik
,
L.
,
Cutroni
,
J. A.
,
Cidade
,
G. A. G.
,
Stucky
,
G. D.
,
Morse
,
D. E.
, and
Hansma
,
P. K.
,
2005
, “
Sacrificial Bonds and Hidden Length Dissipate Energy as Mineralized Fibrils Separate During Bone Fracture
,”
Nat. Mater.
,
4
(
8
), pp.
612
616
.10.1038/nmat1428
107.
Hansma
,
P. K.
,
Fantner
,
G. E.
,
Kindt
,
J. H.
,
Thurner
,
P. J.
,
Schitter
,
G.
,
Turner
,
P. J.
,
Udwin
,
S. F.
, and
Finch
,
M. M.
,
2005
, “
Sacrificial Bonds in the Interfibrillar Matrix of Bone
,”
J. Musculoskelet Neuronal Interact.
,
5
(
4
), pp.
313
315
. https://pubmed.ncbi.nlm.nih.gov/16340118/
108.
Yang
,
H. T. Y.
,
Lin
,
C.
,
Bridges
,
D.
,
Randall
,
C.
, and
Hansma
,
P. K.
,
2010
, “
Bio-Inspired Passive Actuator Simulating an Abalone Shell Mechanism for Structural Control
,”
Smart Mater. Struct.
,
19
(
10
), p.
105011
.10.1088/0964-1726/19/10/105011
109.
Chen
,
X.
,
Yang
,
H. T. Y.
,
Shan
,
J.
,
Hansma
,
P. K.
, and
Shi
,
W.
,
2016
, “
Bio-Inspired Passive Optimized Base-Isolation System for Seismic Mitigation of Building Structures
,”
J. Eng. Mech.-ASCE
,
142
(
1
), p.
04015061
.10.1061/(ASCE)EM.1943-7889.0000971
110.
Mintchev
,
S.
,
Shintake
,
J.
, and
Floreano
,
D.
,
2018
, “
Bioinspired Dual-Stiffness Origami
,”
Sci. Rob.
,
3
(
20
), p.
eaau0275
.10.1126/scirobotics.aau0275
111.
Li
,
W.-B.
,
Zhang
,
W.-M.
,
Zou
,
H.-X.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2019
, “
Bioinspired Variable Stiffness Dielectric Elastomer Actuators With Large and Tunable Load Capacity
,”
Soft Rob.
,
6
(
5
), pp.
631
643
.10.1089/soro.2018.0046
You do not currently have access to this content.