Abstract

Besides the well-known landmark models for the hyperelastic response of rubberlike materials, many new hyperelastic constitutive models have emerged over the last decade. Despite many reviews on constitutive modeling or elastomers, it is still a challenging endeavor for engineers to decide for a constitutive model for the specific rubber compound and application. In this work, we have reviewed 44 hyperelastic constitutive models for elastomers and assessed their strength and weaknesses under uniaxial, pure shear, and (equi)biaxial deformations. To this end, we first present a novel parameter identification methodology based on various multi-objective optimization strategies for the selection of the best constitutive models from a given set of uniaxial tension, pure shear, and (equi)biaxial tension experiments. We utilize a hybrid multi-objective optimization procedure using a genetic algorithm to generate multiple initial points for gradient-based search algorithm, Fmincon utility in matlab. The novelty of the approach is (i) simultaneous fitting with variable weight factors for uniaxial, equibiaxial, and pure shear data, and (ii) the sorting of the models based on objective normalized quality of fit metric. For the models incapable of simultaneously fitting the three distinct deformation data, the validity range is assessed through a threshold value for the quality of fit measure. Accordingly, 44 hyperelastic models are sorted with respect to their simultaneous fitting performance to the experimental dataset of Treloar and Kawabata. Based on the number of material parameters, and their fitting performance to experimental data, a detailed discussion is carried out.

References

1.
Marckmann
,
G.
, and
Verron
,
E.
,
2006
, “
Comparison of Hyperelastic Models for Rubber-Like Materials
,”
Rubber Chem. Technol.
,
79
(
5
), pp.
835
858
.10.5254/1.3547969
2.
Boyce
,
M. C.
, and
Ellen
,
M. A.
,
2000
, “
Constitutive Models of Rubber Elasticity: A Review
,”
Rubber Chem. Technol.
,
73
(
3
), pp.
504
523
.10.5254/1.3547602
3.
Steinmann
,
P.
,
Hossain
,
M.
, and
Possart
,
G.
,
2012
, “
Hyperelastic Models for Rubber-Like Materials: Consistent Tangent Operators and Suitability for Treloar's Data
,”
Arch. Appl. Mech.
,
82
(
9
), pp.
1183
1217
.10.1007/s00419-012-0610-z
4.
Hossain
,
M.
, and
Steinmann
,
P.
,
2013
, “
More Hyperelastic Models for Rubber-Like Materials: Consistent Tangent Operators and Comparative Study
,”
J. Mech. Behav. Mater.
,
22
(
1–2
), pp.
27
50
.10.1515/jmbm-2012-0007
5.
Beda
,
T.
,
2007
, “
Modeling Hyperelastic Behavior of Rubber: A Novel Invariant-Based and a Review of Constitutive Models
,”
J. Polym. Sci. Part B Polym. Phys.
,
45
(
13
), pp.
1713
1732
.10.1002/polb.20928
6.
Beda
,
T.
,
2014
, “
An Approach for Hyperelastic Model-Building and Parameters Estimation a Review of Constitutive Models
,”
Eur. Polym. J.
,
50
, pp.
97
108
.10.1016/j.eurpolymj.2013.10.006
7.
Treloar
,
L. R. G.
,
1943
, “
The Elasticity of a Network of Long-Chain Molecules-II
,”
Trans. Faraday Soc.
,
39
(
0
), pp.
241
246
.10.1039/TF9433900241
8.
Yeoh
,
O. H.
,
1990
, “
Characterization of Elastic Properties of Carbon-Black-Filled Rubber Vulcanizates
,”
Rubber Chem. Technol.
,
63
(
5
), pp.
792
805
.10.5254/1.3538289
9.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.10.5254/1.3538357
10.
Yeoh
,
O. H.
, and
Fleming
,
P. D.
,
1997
, “
A New Attempt to Reconcile the Statistical and Phenomenological Theories of Rubber Elasticity
,”
J. Polym. Sci. Part B Polym. Phys.
,
35
(
12
), pp.
1919
1931
.10.1002/(SICI)1099-0488(19970915)35:12<1919::AID-POLB7>3.0.CO;2-K
11.
Lopez-Pamies
,
O.
,
2010
, “
A New I1-Based Hyperelastic Model for Rubber Elastic Materials
,”
C. R. Mec.
,
338
(
1
), pp.
3
11
.10.1016/j.crme.2009.12.007
12.
Khajehsaeid
,
H.
,
Arghavani
,
J.
, and
Naghdabadi
,
R.
,
2013
, “
A Hyperelastic Constitutive Model for Rubber-Like Materials
,”
Eur. J. Mech. A/Solids
,
38
, pp.
144
151
.10.1016/j.euromechsol.2012.09.010
13.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.10.1063/1.1712836
14.
Isihara
,
A.
,
Hashitsume
,
N.
, and
Tatibana
,
M.
,
1951
, “
Statistical Theory of Rubber-Like Elasticity. IV (Two-Dimensional Stretching)
,”
J. Chem. Phys.
,
19
(
12
), pp.
1508
1512
.10.1063/1.1748111
15.
Biderman
,
V.
,
1958
, “
Calculation of Rubber Parts
,”
Rascheti na Prochnost
, Vol.
40
.
16.
Gent
,
A. N.
, and
Thomas
,
A.
,
1958
, “
Forms for the Stored (Strain) Energy Function for Vulcanized Rubber
,”
J. Polym. Sci.
,
28
(
118
), pp.
625
628
.10.1002/pol.1958.1202811814
17.
James
,
A. G.
,
Green
,
A.
, and
Simpson
,
G. M.
,
1975
, “
Strain Energy Functions of Rubber. I—Characterization of Gum Vulcanizates
,”
J. Appl. Polym. Sci.
,
19
(
7
), pp.
2033
2058
.10.1002/app.1975.070190723
18.
Haines
,
D.
, and
Wilson
,
W.
,
1979
, “
Strain-Energy Density Function for Rubberlike Materials
,”
J. Mech. Phys. Solids
,
27
(
4
), pp.
345
360
.10.1016/0022-5096(79)90034-6
19.
Swanson
,
S. R.
,
1985
, “
A Constitutive Model for High Elongation Elastic Materials
,”
ASME J. Eng. Mater. Technol.
,
107
(
2
), pp.
110
114
.10.1115/1.3225782
20.
Kilian
,
H.-G.
,
Enderle
,
H. F.
, and
Unseld
,
K.
,
1986
, “
The Use of the Van Der Waals Model to Elucidate Universal Aspects of Structure-Property Relationships in Simply Extended Dry and Swollen Rubbers
,”
Colloid Polym. Sci.
,
264
(
10
), pp.
866
876
.10.1007/BF01410637
21.
Yamashita
,
Y.
, and
Kawabata
,
S.
,
1992
, “
Approximated Form of the Strain Energy-Density Function of Carbon-Black Filled Rubbers for Industrial Applications
,”
Nippon Gomu Kyokaishi (J. Soc. Rubber Ind., Jpn.)
,
65
(
9
), pp.
517
528
.10.2324/gomu.65.517
22.
Lion
,
A.
,
1997
, “
On the Large Deformation Behaviour of Reinforced Rubber at Different Temperatures
,”
J. Mech. Phys. Solids
,
45
(
11–12
), pp.
1805
1834
.10.1016/S0022-5096(97)00028-8
23.
Lambert-Diani
,
J.
, and
Rey
,
C.
,
1999
, “
New Phenomenological Behavior Laws for Rubbers and Thermoplastic Elastomers
,”
Eur. J. Mech. A/Solids
,
18
(
6
), pp.
1027
1043
.10.1016/S0997-7538(99)00147-3
24.
Haupt
,
P.
, and
Sedlan
,
K.
,
2001
, “
Viscoplasticity of Elastomeric Materials: Experimental Facts and Constitutive Modelling
,”
Arch. Appl. Mech.
,
71
(
2–3
), pp.
89
109
.10.1007/s004190000102
25.
Chevalier
,
L.
, and
Marco
,
Y.
,
2002
, “
Tools for Multiaxial Validation of Behavior Laws Chosen for Modeling Hyper-Elasticity of Rubber-Like Materials
,”
Polym. Eng. Sci.
,
42
(
2
), pp.
280
298
.10.1002/pen.10948
26.
Pucci
,
E.
, and
Saccomandi
,
G.
,
2002
, “
A Note on the Gent Model for Rubber-Like Materials
,”
Rubber Chem. Technol.
,
75
(
5
), pp.
839
852
.10.5254/1.3547687
27.
Amin
,
A. F.
,
Wiraguna
,
S. I.
,
Bhuiyan
,
A. R.
, and
Okui
,
Y.
,
2006
, “
Hyperelasticity Model for Finite Element Analysis of Natural and High Damping Rubbers in Compression and Shear
,”
J. Eng. Mech.
,
132
(
1
), pp.
54
64
.10.1061/(ASCE)0733-9399(2006)132:1(54)
28.
Carroll
,
M. M.
,
2011
, “
A Strain Energy Function for Vulcanized Rubbers
,”
J. Elasticity
,
103
(
2
), pp.
173
187
.10.1007/s10659-010-9279-0
29.
Nunes
,
L. C. S.
,
2011
, “
Mechanical Characterization of Hyperelastic Polydimethylsiloxane by Simple Shear Test
,”
Mater. Sci. Eng. A
,
528
(
3
), pp.
1799
1804
.10.1016/j.msea.2010.11.025
30.
Yaya
,
K.
, and
Bechir
,
H.
,
2018
, “
A New Hyper-Elastic Model for Predicting Multi-Axial Behaviour of Rubber-Like Materials: Formulation and Computational Aspects
,”
Mech. Time-Depend. Mater.
,
22
(
2
), pp.
167
186
.10.1007/s11043-017-9355-y
31.
Hart-Smith
,
L. J.
,
1966
, “
Elasticity Parameters for Finite Deformations of Rubber-Like Materials
,”
Z. Angew. Math. Phys. ZAMP
,
17
(
5
), pp.
608
626
.10.1007/BF01597242
32.
Rivlin
,
R. S.
, and
Saunders
,
D. W.
,
1951
, “
Large Elastic Deformations of Isotropic Materials: VII—Experiments on the Deformation of Rubber
,”
Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci.
,
243
(
865
), pp.
251
288
.10.1098/rsta.1951.0004
33.
Ogden
,
R. W.
,
Saccomandi
,
G.
, and
Sgura
,
I.
,
2004
, “
Fitting Hyperelastic Models to Experimental Data
,”
Comput. Mech.
,
34
(
6
), pp.
484
502
.10.1007/s00466-004-0593-y
34.
Boyce
,
M. C.
,
1996
, “
Direct Comparison of the Gent and the Arruda–Boyce Constitutive Models of Rubber Elasticity
,”
Rubber Chem. Technol.
,
69
(
5
), pp.
781
785
.10.5254/1.3538401
35.
Valanis
,
K. C.
, and
Landel
,
R. F.
,
1967
, “
The Strain-Energy Function of a Hyperelastic Material in Terms of the Extension Ratios
,”
J. Appl. Phys.
,
38
(
7
), pp.
2997
3002
.10.1063/1.1710039
36.
Deam
,
R. T.
, and
Edwards
,
S. F.
,
1976
, “
The Theory of Rubber Elasticity
,”
Philos. Trans. R. Soc. London Ser. A Math. Phys. Sci.
,
280
(
1296
), pp.
317
353
.10.1098/rsta.1976.0001
37.
Ball
,
R. C.
,
Doi
,
M.
,
Edwards
,
S. F.
, and
Warner
,
M.
,
1981
, “
Elasticity of Entangled Networks
,”
Polymer
,
22
(
8
), pp.
1010
1018
.10.1016/0032-3861(81)90284-6
38.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity-on the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London A
,
326
(
1567
), pp.
565
584
.10.1098/rspa.1972.0026
39.
Shariff
,
M. H. B. M.
,
2000
, “
Strain Energy Function for Filled and Unfilled Rubberlike Material
,”
Rubber Chem. Technol.
,
73
(
1
), pp.
1
18
.10.5254/1.3547576
40.
Attard
,
M. M.
, and
Hunt
,
G. W.
,
2004
, “
Hyperelastic Constitutive Modeling Under Finite Strain
,”
Int. J. Solids Struct.
,
41
(
18–19
), pp.
5327
5350
.10.1016/j.ijsolstr.2004.03.016
41.
Korba
,
A. G.
, and
Barkey
,
M. E.
,
2017
, “
New Model for Hyper-Elastic Materials Behavior With an Application on Natural Rubber
,”
ASME
Paper No. MSEC2017-2792.10.1115/MSEC2017-2792
42.
Kuhn
,
W.
, and
Grün
,
F.
,
1942
, “
Beziehungen Zwischen Elastischen Konstanten Und Dehnungsdoppelbrechung Hochelastischer Stoffe
,”
Kolloid-Z.
,
101
(
3
), pp.
248
271
.10.1007/BF01793684
43.
Wall
,
F. T.
,
1942
, “
Statistical Thermodynamics of Rubber
,”
J. Chem. Phys.
,
10
(
2
), pp.
132
134
.10.1063/1.1723668
44.
Treloar
,
L. R. G.
,
1975
,
The Physics of Rubber Elasticity
,
3rd Edition, Clarendon Press, Oxford
, UK.
45.
Wang
,
M. C.
, and
Guth
,
E.
,
1952
, “
Statistical Theory of Networks of Non-Gaussian Flexible Chains
,”
J. Chem. Phys.
,
20
(
7
), pp.
1144
1157
.10.1063/1.1700682
46.
Flory
,
P. J.
, and
Rehner
,
J.
,
1943
, “
Statistical Mechanics of Cross-Linked Polymer Networks: I—Rubberlike Elasticity
,”
J. Chem. Phys.
,
11
(
11
), pp.
512
520
.10.1063/1.1723791
47.
Treloar
,
L. R. G.
, and
Riding
,
G.
,
1979
, “
A Non-Gaussian Theory of Rubber in Biaxial Strain: I—Mechanical Properties
,”
Proc. R. Soc. London A
,
369
(
1737
), pp.
261
280
.10.1098/rspa.1979.0163
48.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.10.1016/0022-5096(93)90013-6
49.
Miehe
,
C.
,
Göktepe
,
S.
, and
Lulei
,
F.
,
2004
, “
A Micro-Macro Approach to Rubber-Like Materials-Part i: The Non-Affine Micro-Sphere Model of Rubber Elasticity
,”
J. Mech. Phys. Solids
,
52
(
11
), pp.
2617
2660
.10.1016/j.jmps.2004.03.011
50.
Dal
,
H.
,
Gültekin
,
O.
, and
Açıkgöz
,
K.
,
2020
, “
An Extended Eight-Chain Model for Hyperelastic and Finite Viscoelastic Response of Rubberlike Materials: Theory, Experiments and Numerical Aspects
,”
J. Mech. Phys. Solids
,
145
, p.
104159
.10.1016/j.jmps.2020.104159
51.
Heinrich
,
G.
, and
Kaliske
,
M.
,
1997
, “
Theoretical and Numerical Formulation of a Molecular Based Constitutive Tube-Model of Rubber Elasticity
,”
Comput. Theor. Polym. Sci.
,
7
(
3–4
), pp.
227
241
.10.1016/S1089-3156(98)00010-5
52.
Kaliske
,
M.
, and
Heinrich
,
G.
,
1999
, “
An Extended Tube-Model for Rubber Elasticity: Statistical-Mechanical Theory and Finite Element Implementation
,”
Rubber Chem. Technol.
,
72
(
4
), pp.
602
632
.10.5254/1.3538822
53.
Davidson
,
J. D.
, and
Goulbourne
,
N. C.
,
2013
, “
A Nonaffine Network Model for Elastomers Undergoing Finite Deformations
,”
J. Mech. Phys. Solids
,
61
(
8
), pp.
1784
1797
.10.1016/j.jmps.2013.03.009
54.
Xiang
,
Y.
,
Zhong
,
D.
,
Wang
,
P.
,
Mao
,
G.
,
Yu
,
H.
, and
Qu
,
S.
,
2018
, “
A General Constitutive Model of Soft Elastomers
,”
J. Mech. Phys. Solids
,
117
, pp.
110
122
.10.1016/j.jmps.2018.04.016
55.
Treloar
,
L. R. G.
,
1944
, “
Stress-Strain Data for Vulcanized Rubber Under Various Types of Deformation
,”
Rubber Chem. Technol.
,
17
(
4
), pp.
813
825
.10.5254/1.3546701
56.
Kawabata
,
S.
,
Matsuda
,
M.
,
Tei
,
K.
, and
Kawai
,
H.
,
1981
, “
Experimental Survey of the Strain Energy Density Function of Isoprene Rubber Vulcanizate
,”
Macromolecules
,
14
(
1
), pp.
154
162
.10.1021/ma50002a032
57.
Chevalier
,
L.
,
Calloch
,
S.
,
Hild
,
F.
, and
Marco
,
Y.
,
2001
, “
Digital Image Correlation Used to Analyze the Multiaxial Behavior of Rubber-Like Materials
,”
Eur. J. Mech. A/Solids
,
20
(
2
), pp.
169
187
.10.1016/S0997-7538(00)01135-9
58.
Sasso
,
M.
,
Palmieri
,
G.
,
Chiappini
,
G.
, and
Amodio
,
D.
,
2008
, “
Characterization of Hyperelastic Rubber-Like Materials by Biaxial and Uniaxial Stretching Tests Based on Optical Methods
,”
Polym. Test.
,
27
(
8
), pp.
995
1004
.10.1016/j.polymertesting.2008.09.001
59.
Hitt
,
D.
, and
Gilbert
,
M.
,
1994
, “
A Machine for the Biaxial Stretching of Polymers
,”
Polym. Test.
,
13
(
3
), pp.
219
237
.10.1016/0142-9418(94)90029-9
60.
Cakmak
,
M.
,
Hassan
,
M.
,
Unsal
,
E.
, and
Martins
,
C.
,
2012
, “
A Fast Real Time Measurement System to Track in and Out of Plane Optical Retardation/Birefringence, True Stress, and True Strain During Biaxial Stretching of Polymer Films
,”
Rev. Sci. Instrum.
,
83
(
12
), p.
123901
.10.1063/1.4768531
61.
Hariharaputhiran
,
H.
, and
Saravanan
,
U.
,
2016
, “
A New Set of Biaxial and Uniaxial Experiments on Vulcanized Rubber and Attempts at Modeling It Using Classical Hyperelastic Models
,”
Mech. Mater.
,
92
, pp.
211
222
.10.1016/j.mechmat.2015.09.003
62.
Fujikawa
,
M.
,
Maeda
,
N.
,
Yamabe
,
J.
,
Kodama
,
Y.
, and
Koishi
,
M.
,
2014
, “
Determining Stress–Strain in Rubber With in-Plane Biaxial Tensile Tester
,”
Exp. Mech.
,
54
(
9
), pp.
1639
1649
.10.1007/s11340-014-9942-7
63.
Reuge
,
N.
,
Schmidt
,
F. M.
,
Le Maoult
,
Y.
,
Rachik
,
M.
, and
Abb
,
F.
,
2001
, “
Elastomer Biaxial Characterization Using Bubble Inflation Technique: I—Experimental Investigations
,”
Polym. Eng. Sci.
,
41
(
3
), pp.
522
531
.10.1002/pen.10749
64.
Marsden
,
J. E.
, and
Hughes
,
T. J. R.
,
1983
,
Mathematical Foundations of Elasticity
,
Prentice Hall
,
Englewood Cliffs, NJ
.
65.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
, Cambridge, UK.
66.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
, Hoboken, NJ.
67.
Flory
,
P. J.
,
1961
, “
Thermodynamic Relations for High Elastic Materials
,”
Trans. Faraday Soc.
,
57
, pp.
829
838
.10.1039/tf9615700829
68.
Ogden
,
R.
,
1982
, “
Elastic Deformations of Rubberlike Solids
,”
Mechanics of Solids
,
H.
Hopkins
, and
M.
Sewell
, eds.,
Oxford
,
Pergamon
, pp.
499
537
.
69.
Miehe
,
C.
,
1994
, “
Aspects of the Formulation and Finite Element Implementation of Large Strain Isotropic Elasticity
,”
Int. J. Numer. Methods Eng.
,
37
(
12
), pp.
1981
2004
.10.1002/nme.1620371202
70.
Kaliske
,
M.
, and
Rothert
,
H.
,
1997
, “
Formulation and Implementation of Three–Dimensional Viscoelasticity at Small and Finite Strains
,”
Comput. Mech.
,
19
(
3
), pp.
228
239
.10.1007/s004660050171
71.
Miehe
,
C.
, and
Keck
,
J.
,
2000
, “
Superimposed Finite Elastic–Viscoelastic–Plastoelastic Stress Response With Damage in Filled Rubbery Polymers. Experiments, Modelling and Algorithmic Implementation
,”
J. Mech. Phys. Solids
,
48
(
2
), pp.
323
365
.10.1016/S0022-5096(99)00017-4
72.
Simo
,
J. C.
,
Taylor
,
R. L.
, and
Pister
,
K. S.
,
1985
, “
Variational and Projection Methods for the Volume Constraint in Finite Deformation Elasto–Plasticity
,”
Comput. Methods Appl. Mech. Eng.
,
51
(
1–3
), pp.
177
208
.10.1016/0045-7825(85)90033-7
73.
Dal
,
H.
,
Cans Iz
,
B.
, and
Miehe
,
C.
,
2018
, “
A Three-Scale Compressible Microsphere Model for Hyperelastic Materials
,”
Int. J. Numer. Methods Eng.
,
116
(
6
), pp.
412
433
.10.1002/nme.5930
74.
Kadapa, C., and Hossain, M., 2020, “A Linearized Consistent Mixed Displacement-Pressure Formulation for Hyperelasticity
,”
Mech. Adv. Mater. Struct.
, pp.
1
18
.10.1080/15376494.2020.1762952
75.
Yeoh
,
O. H.
,
1993
, “
Some Forms of the Strain Energy Function for Rubber
,”
Rubber Chem. Technol.
,
66
(
5
), pp.
754
771
.10.5254/1.3538343
76.
Rivlin
,
R. S.
,
1948
, “
Large Elastic Deformations of Isotropic Materials: IV—Further Developments of the General Theory
,”
Philos. Trans. R. Soc. London Ser. A, Math. Phys. Sci.
,
241
(
835
), pp.
379
397
.10.1098/rsta.1948.0024
77.
Gent
,
A. N.
, and
Rivlin
,
R. S.
,
1952
, “
Experiments on the Mechanics of Rubber II: The Torsion, Inflation and Extension of a Tube
,”
Proc. Phys. Soc. Sect. B
,
65
(
7
), pp.
487
501
.10.1088/0370-1301/65/7/304
78.
Thomas
,
A. G.
,
1955
, “
The Departures From the Statistical Theory of Rubber Elasticity
,”
Trans. Faraday Soc.
,
51
, pp.
569
582
.10.1039/tf9555100569
79.
Alexander
,
H.
,
1968
, “
A Constitutive Relation for Rubber-Like Materials
,”
Int. J. Eng. Sci.
,
6
(
9
), pp.
549
563
.10.1016/0020-7225(68)90006-2
80.
Pak
,
H.
, and
Flory
,
P. J.
,
1979
, “
Relationship of Stress to Uniaxial Strain in Crosslinked Poly (Dimethylsiloxane) Over the Full Range From Large Compressions to High Elongations
,”
J. Polym. Sci.: Polym. Phys. Ed.
,
17
(
11
), pp.
1845
1854
.10.1002/pol.1979.180171102
81.
Erman
,
B.
, and
Flory
,
P. J.
,
1982
, “
Relationships Between Stress, Strain, and Molecular Constitution of Polymer Networks. Comparison of Theory With Experiments
,”
Macromolecules
,
15
(
3
), pp.
806
811
.10.1021/ma00231a023
82.
Flory
,
P. J.
, and
Erman
,
B.
,
1982
, “
Theory of Elasticity of Polymer Networks: 3
,”
Macromolecules
,
15
(
3
), pp.
800
806
.10.1021/ma00231a022
83.
Heinrich
,
G.
, and
Straube
,
E.
,
1983
, “
On the Strength and Deformation Dependence of the Tube–Like Topological Constraints of Polymer Networks, Melts and Concentrated Solutions: I—The Polymer Network Case
,”
Acta Polym.
,
34
(
9
), pp.
589
594
.10.1002/actp.1983.010340909
84.
Heinrich
,
G.
, and
Straube
,
E.
,
1984
, “
On the Strength and Deformation Dependence of the Tube–Like Topological Constraints of Polymer Networks, Melts and Concentrated Solutions: I—Polymer Melts and Concentrated Solutions
,”
Acta Polym.
,
35
(
2
), pp.
115
119
.10.1002/actp.1984.010350201
85.
Doi
,
M.
, and
Edwards
,
S. F.
,
1986
,
The Theory of Polymer Dynamics
, 1st ed.,
Clarendon Press
,
Oxford, UK
.
86.
Bechir
,
H.
,
Chevalier
,
L.
,
Chaouche
,
M.
, and
Boufala
,
K.
,
2006
, “
Hyperelastic Constitutive Model for Rubber-Like Materials Based on the First Seth Strain Measures Invariant
,”
Eur. J. Mech. A/Solids
,
25
(
1
), pp.
110
124
.10.1016/j.euromechsol.2005.03.005
87.
Kuhn
,
W.
,
1934
, “
Über Die Gestalt Fadenförmiger Moleküle in Lösungen
,”
Kolloid-Z.
,
68
(
1
), pp.
2
15
.10.1007/BF01451681
88.
Kuhn
,
W.
,
1936
, “
Beziehungen Zwischen Molekülgröße, Statistischer Molekülgestalt Und Elastischen Eigenschaften Hochpolymerer Stoffe
,”
Kolloid-Z.
,
76
(
3
), pp.
258
271
.10.1007/BF01451143
89.
Bažant
,
Z. P.
, and
Oh
,
B. H.
,
1986
, “
Efficient Numerical Integration on the Surface of a Sphere
,”
Z. Angew. Math. Mech.
,
66
(
1
), pp.
37
49
.10.1002/zamm.19860660108
90.
Khiêm
,
V. N.
, and
Itskov
,
M.
,
2016
, “
Analytical Network-Averaging of the Tube Model:: Rubber Elasticity
,”
J. Mech. Phys. Solids
,
95
, pp.
254
269
.10.1016/j.jmps.2016.05.030
91.
Ilg
,
P.
,
Karlin
,
I. V.
, and
Succi
,
S.
,
2000
, “
Supersymmetry Solution for Finitely Extensible Dumbbell Model
,”
Europhys. Lett. (EPL)
,
51
(
3
), pp.
355
360
.10.1209/epl/i2000-00360-9
92.
Cohen
,
A.
,
1991
, “
A Padé Approximant to the Inverse Langevin Function
,”
Rheol. Acta
,
30
(
3
), pp.
270
273
.10.1007/BF00366640
93.
Rubinstein
,
M.
, and
Panyukov
,
S.
,
1997
, “
Nonaffine Deformation and Elasticity of Polymer Networks
,”
Macromolecules
,
30
(
25
), pp.
8036
8044
.10.1021/ma970364k
94.
Hossain
,
M.
,
Amin
,
A.
, and
Kabir
,
M. N.
,
2015
, “
Eight-Chain and Full-Network Models and Their Modified Versions for Rubber Hyperelasticity: A Comparative Study
,”
J. Mech. Behav. Mater.
,
24
(
1–2
), pp.
11
24
.10.1515/jmbm-2015-0002
95.
Dal
,
H.
,
Badienia
,
Y.
,
Aikgöz
,
K.
, and
Denlï
,
F. A.
,
2019
, “
A Comparative Study on Hyperelastic Constitutive Models on Rubber: State of the Art After 2006
,” Proceedings of the 11th European Conference on Constitutive Models for Rubber (
ECCMR XI
), Nantes, France, June 25–27, pp.
239
244
.10.1201/9780429324710-42
You do not currently have access to this content.