Mechanical loads affect growth and morphogenesis in the developing heart. Using a theoretical model, we studied stress-modulated growth in the embryonic chick ventricle during stages 21–29 (4–6 days of a 21-day incubation period). The model is a thick-walled, compressible, pseudoelastic cylinder, with finite volumetric growth included by letting the rate of change of the local zero-stress configuration depend linearly on the Cauchy stresses. After investigating the fundamental behavior of the model, we used it to study global and local growth in the primitive ventricle due to normal and abnormal cavity pressures. With end-diastolic pressure taken as the growth-modulating stimulus, correlating theoretical and available experimental results yielded the coefficients of the growth law, which was assumed to be independent of time and loading conditions. For both normal and elevated pressures, the predicted changes in radius and wall volume during development were similar to experimental measurements. In addition, the residual stress generated by differential growth agreed with experimental data. These results suggest that wall stress may be a biomechanical factor that regulates growth in the embryonic heart.

1.
Beloussov
 
L. V.
,
Dorfman
 
J. G.
, and
Cherdantzev
 
V. G.
,
1975
, “
Mechanical Stresses and Morphological Patterns in Amphibian Embryos
,”
Journal of Embryology and Experimental Morphology
, Vol.
34
, pp.
559
574
.
2.
Beloussov
 
L. V.
,
Lakirev
 
A. V.
, and
Naumidi
 
I. I.
,
1988
, “
The Role of External Tensions in Differentiation of Xenopus Laevis Embryonic Tissues
,”
Cell Differentiation and Development
, Vol.
25
, pp.
165
176
.
3.
Burton, R. R., 1972, “Heart Growth and Size in Homeotherms,” Regulation of Organ and Tissue Growth, Goss, R. J., ed., Academic Press, New York, pp. 101–125.
4.
Clark, E. B., 1989, “Growth, Morphogenesis, and Function: The Dynamics of Cardiac Development,” Fetal, Neonatal, and Infant Heart Disease, Moller, J. H., Neal, W., and Lock, J., eds., Appleton-Century-Crofts, New York, pp. 1–17.
5.
Clark
 
E. B.
,
Hu
 
N.
,
Frommelt
 
P.
,
Vandekieft
 
G. K.
,
Dummett
 
J. L.
, and
Tomanek
 
R. J.
,
1989
, “
Effect of Increased Pressure on Ventricular Growth in Stage 21 Chick Embryos
,”
American Journal of Physiology
, Vol.
257
, pp.
H55–H61
H55–H61
.
6.
Cowin
 
S. C.
,
1984
, “
Mechanical Modeling of the Stress Adaptation Process in Bone
,”
Calcified Tissue International
, Vol.
36
, pp.
S98–S103
S98–S103
.
7.
Cowin, S. C. (ed.), 1989, Bone Mechanics, CRC Press, Boca Raton, FL.
8.
Cowin
 
S. C.
, and
Firoozbakhsh
 
K.
,
1981
, “
Bone Remodeling of Diaphysial Surfaces under Constant Load: Theoretical Predictions
,”
Journal of Biomechanics
, Vol.
14
, pp.
471
484
.
9.
Cowin
 
S. C.
, and
Van Buskirk
 
W. C.
,
1979
, “
Surface Bone Remodeling Induced by a Medullary Pin
,”
Journal of Biomechanics
, Vol.
12
, pp.
269
276
.
10.
Fishman
 
M. C.
, and
Stainier
 
D. Y. R.
,
1994
, “
Cardiovascular Development: Prospects for a Genetic Approach
,”
Circulation Research
, Vol.
74
, pp.
757
763
.
11.
Fung, Y. C, 1990, Biomechanics: Motion, Flow, Stress, and Growth, Springer, New York.
12.
Fung, Y. C, 1993, Biomechanics: Mechanical Properties of Living Tissues, 2nd Ed., Springer, New York.
13.
Green, A. E., and Adkins, J. E., 1970, Large Elastic Deformations, 2nd Ed., Oxford University Press, London.
14.
Grossman
 
W.
,
1980
, “
Cardiac Hypertrophy: Useful Adaptation or Pathologic Process?
,”
American Journal of Medicine
, Vol.
69
, pp.
576
584
.
15.
Hsu
 
F. H.
,
1968
, “
The Influences of Mechanical Loads on the Form of a Growing Elastic Body
,”
Journal of Biomechanics
, Vol.
1
, pp.
303
311
.
16.
Lin
 
I. E.
, and
Taber
 
L. A.
,
1994
, “
Mechanical Effects of Looping in the Embryonic Chick Heart
,”
Journal of Biomechanics
, Vol.
27
, pp.
311
321
.
17.
Liu
 
S. Q.
, and
Fung
 
Y. C.
,
1989
, “
Relationship Between Hypertension, Hypertrophy, and Opening Angle of Zero-Stress State of Arteries Following Aortic Constriction
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
111
, pp.
325
335
.
18.
Martin
 
R. R.
, and
Haines
 
H.
,
1970
, “
Application of Laplace’s Law to Mammalian Hearts
,”
Computational Biochemistry and Physiology
, Vol.
34
, pp.
959
962
.
19.
Rodriguez
 
E. K.
,
Omens
 
J. H.
,
Waldman
 
L. K.
, and
McCulloch
 
A. D.
,
1993
, “
Effect of Residual Stress on Transmural Sarcomere Length Distributions in Rat Left Ventricle
,”
American Journal of Physiology
, Vol.
264
, pp.
H1048–H1056
H1048–H1056
.
20.
Rodriguez
 
E. K.
,
Hoger
 
A.
, and
McCulloch
 
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
Journal of Biomechanics
, Vol.
27
, pp.
455
467
.
21.
Shiraishi
 
I.
,
Takamatsu
 
T.
,
Minamikawa
 
T.
, and
Fujita
 
S.
,
1992
, “
3-D Observation of Actin Filaments During Cardiac Myofibrinogenesis in Chick Embryo Using a Confocal Laser Scanning Microscope
,”
Anatomy and Embryology
, Vol.
185
, pp.
401
408
.
22.
Skalak, R., 1981, “Growth as a Finite Displacement Field,” Proceedings of the IUTAM Symposium on Finite Elasticity, Carlson, D. E., and Shield, R. T., eds., Martinus Nijhoff Publishers, The Hague, pp. 347–355.
23.
Skalak
 
R.
,
Dasgupta
 
G.
,
Moss
 
M.
,
Otten
 
E.
,
Dullemeijer
 
P.
, and
Vilmann
 
H.
,
1982
, “
Analytical Description of Growth
,”
Journal of Theoretical Biology
, Vol.
94
, pp.
555
577
.
24.
Taber
 
L. A.
,
Hu
 
N.
,
Pexieder
 
T.
,
Clark
 
E. B.
, and
Keller
 
B. B.
,
1993
, “
Residual Strain in the Ventricle of the Stage 16–24 Chick Embryo
,”
Circulation Research
, Vol.
72
, pp.
455
462
.
25.
Yang
 
M.
,
Taber
 
L. A.
, and
Clark
 
E. B.
,
1994
, “
A Nonlinear Poroelastic Model for the Trabecular Embryonic Heart
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
116
, pp.
213
223
.
This content is only available via PDF.
You do not currently have access to this content.