The designer of a cementless hip stem in total hip replacement must find a balance between two conflicting demands. On the one hand, a stiff stem shields the surrounding bone from mechanical loading (stress shielding), which may lead to bone loss, particularly around the proximal part of the stem. Reducing the stem stiffness decreases the amount of stress shielding and hence the amount of bone loss. However, this measure inevitably promotes higher proximal interface stresses and thereby increases the risk of proximal interface failure. The designer’s task therefore is to optimize the stem stiffness in order to find the best compromise in the conflict. Yet, a better compromise might be found when the stem material was nonhomogeneous, in other words when an arbitrary distribution of the elastic properties inside the stem was allowed. The number of conceivable designs would increase enormously, making the designer’s task almost impossible. In the present paper, we develop a numerical design optimization method to determine the optimal stiffness characteristics for a hip stem. A finite element program is coupled with a numerical optimization method, thus producing a design optimization scheme. The scheme minimizes the probability for interface failure while limiting the amount of bone loss, by adapting the parameters describing the nonhomogeneous elastic modulus distribution. As an example, a simplified model of a hip stem is made, whose modulus distribution is optimized. Assuming equal long-term bone loss, the maximum interface stress can be reduced by over 50 percent when compared to a homogeneous flexible stem, thus demonstrating the value of the new approach.

1.
Adams
 
R. D.
,
1989
, “
Strength predictions for lap joints, especially with composite adherends. A review
,”
J. Adhesion
, Vol.
30
, pp.
219
242
.
2.
Belegundu
 
A. D.
, and
Arora
 
J. S.
,
1985
a, “
A study of mathematical programming methods for structural optimization. Part I: Theory
,”
Int. J. Num. Meth. Eng.
, Vol.
21
, pp.
1583
1599
.
3.
Belegundu
 
A. D.
, and
Arora
 
J. S.
,
1985
b, “
A study of mathematical programming methods for structural optimization. Part II: Numerical results
,”
Int. J. Num. Meth. Eng.
, Vol.
21
, pp.
1601
1623
.
4.
Bragdon, C. R., Jasty, M., Haire, T., Maloney, W., and Harris, W. H., 1991, “Porous coated femoral components can loosen despite extensive bone ingrowth: observations on retrieved components,” Transactions of the 37th Annual Meeting of the Orthopaedic Research Society, Anaheim, CA, p. 532.
5.
Clemow
 
A. J. T.
,
Weinstein
 
A. M.
,
Klawitter
 
J.
,
Koeneman
 
J.
, and
Anderson
 
J.
,
1981
, “
Interface mechanics of porous titanium implants
,”
J. Biomed. Mat. Res.
, Vol.
15
, pp.
73
82
.
6.
Collier
 
J. P.
,
Mayor
 
M. B.
,
Chae
 
J. C.
,
Surprenant
 
V. A.
,
Surprenant
 
H. P.
, and
Dauphinais
 
L. A.
,
1988
, “
Macroscopic and microscopic evidence of prosthetic fixation with porous-coated materials
,”
Clin. Orthop. Rel. Res.
, Vol.
235
, pp.
173
180
.
7.
Cook
 
S. D.
,
Thomas
 
K. A.
, and
Haddad
 
R. J.
,
1988
, “
Histologic analysis of retrieved human porous-coated total joint components
,”
Clin. Orthop. Rel. Res.
, Vol.
234
, pp.
90
101
.
8.
Creyke, W. E. C., 1982, Design With Non-ductile Materials, Applied Science Publishers, Barking.
9.
Engh
 
C. A.
,
McGovern
 
T. F.
,
Bobyn
 
J. D.
, and
Harris
 
W. H.
,
1992
, “
A quantitative evaluation of periprosthetic bone-remodeling after cementless total hip arthroplasty
,”
J. Bone Jt. Surg.
, Vol.
74-A
, pp.
1009
1020
.
10.
Frost
 
H. M.
,
1988
, “
Vital Biomechanics. Proposed general concepts for skeletal adaptations to mechanical usage
,”
Calcif. Tissue Int.
, Vol.
42
, pp.
145
156
.
11.
Gill, P. E., Murray, W., and Wright, M. H., 1981, Practical Optimization, Academic Press, London.
12.
Gordon, J. E., 1984, Structures or Why Things Don’t Fall Down, Penguin Books, Harmondsworth.
13.
Haug, E. J., Choi, K. K., and Komkov, V., 1986, Design Sensitivity Analysis of Structural Problems, Academic Press, New York.
14.
Huiskes, R., 1980, “Some fundamental aspects of human joint replacement,” Acta Orthop. Scand., Supplementum 185.
15.
Huiskes
 
R.
,
Weinans
 
H.
,
Grootenboer
 
H. J.
,
Dalstra
 
M.
,
Fudala
 
B.
, and
Slooff
 
T. J.
,
1987
, “
Adaptive bone-remodeling theory applied to prosthetic-design analysis
,”
J. Biomech.
, Vol.
20
, pp.
1135
1150
.
16.
Huiskes
 
R.
, and
Boeklagen
 
R.
,
1989
, “
Mathematical shape optimization of hip prosthesis design
,”
J. Biomech.
, Vol.
22
, pp.
793
804
.
17.
Huiskes
 
R.
,
Weinans
 
H.
, and
Dalstra
 
M.
,
1989
, “
Adaptive bone remodeling and biomechanical design considerations for noncemented total hip arthroplasty
,”
Orthopedics
, Vol.
12
, pp.
1255
1267
.
18.
Huiskes
 
R.
,
1990
, “
The various stress patterns of press-fit, ingrown, and cemented femoral stems
,”
Clin. Orthop. Rel. Res.
, Vol.
261
, pp.
27
38
.
19.
Huiskes
 
R.
,
Weinans
 
H.
, and
van Rietbergen
 
B.
,
1992
, “
The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials
,”
Clin. Orthop. Rel. Res.
, Vol.
274
, pp.
124
134
.
20.
Katoozian, H., and Davy, D. T., 1993, “Three-dimensional shape optimization of femoral components of total hip prostheses,” in: Proc. 1993 Bioengineering Conference Langrana, N. A., Friedman, M. H., and Grood, E. S., eds., Breckenridge, CO, pp. 552–555.
21.
Kuiper, J. H., 1993, “Numerical optimization of artificial hip joint designs,” PhD-thesis, Nijmegen, The Netherlands.
22.
Kuiper
 
J. H.
, and
Huiskes
 
R.
,
1996
, “
Friction and stem stiffness affect dynamic interface motion in total hip replacement
,”
J. Orthop. Res.
, Vol.
14
, pp.
36
43
.
23.
Kuiper, J. H., and Huiskes, R., 1997, “The predictive value of stress shielding for quantification of adaptive bone resorption around hip replacements,” ASME JOURNAL OF BIOMECHANICAL ENGINEERING (accepted for publication).
24.
Oden, J. T., and Carey, G. F., 1984, Finite Elements. Vol V: Special Problems in Solid Mechanics, Prentice Hall, Englewood Cliffs, NJ.
25.
Pande, G. N., and Lee, J. S., 1992, “A finite element homogenisation technique for bone and soft tissue interface analysis,” in: Computer Methods in Biomechanics and Biomechanical Engineering, Middleton, J., Pande, G. N., and Williams, K. R., eds., Books & Journals International Ltd., Swansea, pp. 298–307.
26.
Poss, R., Robertson, D. D., Walker, P. S., Reilly, D. T., Ewald, F. C., Thomas, W. H., and Sledge, C. B., 1988, “Anatomic stem design for press-fit and cemented application,” in: Non–Cemented Total Hip Arthroplasty, Fitzgerald, R., Jr., ed., Raven Press, New York, pp. 343–363.
27.
Rozvany, G. I. N., 1989, Structural Design via Optimality Criteria (the Prager Approach to Structural Optimization), Kluwer, Dordrecht, The Netherlands.
28.
Saanouni, K., and Lesne, P. M., 1990, “Non-local damage model for creep crack growth prediction,” in: Bensussan, B., ed., High Temperature Fracture Mechanisms and Mechanics, EGF6, Mechanical Engineering Publications, London, pp. 449–466.
29.
Schittkowski
 
K.
,
1985
, “
NLPQL: a fortran subroutine solving constrained nonlinear programming problems
,”
Ann. Operations Res.
, Vol.
5
, pp.
485
500
.
30.
Shields, J., 1985, Adhesives Handbook, 3rd ed., Butterworth, London.
31.
St. Ville
 
J. A.
,
Ecker
 
J. A.
, and
Winget
 
J. M.
,
1990
, “
The anatomy of midthigh pain after total hip arthroplasty
,” in:
Abstracts of the 1st World Congress of Biomechanics
, Vol.
I
, La Jolla, CA, p.
217
217
.
32.
Tensi
 
H. M.
,
Gese
 
H.
, and
Ascherl
 
P.
,
1989
, “
Non-linear three-dimensional finite element analysis of a cementless hip endoprosthesis
,”
J. Eng. in Medicine (Proc. Instn. Mech. Engrs. H)
, Vol.
203
, pp.
215
222
.
33.
Thanedar
 
P. B.
,
Arora
 
J. S.
,
Tseng
 
C. H.
,
Lim
 
O. K.
, and
Park
 
G. J.
,
1986
, “
Performance of some SQP algorithms on structural design problems
,”
Int. J. Num. Meth. Eng.
, Vol.
23
, pp.
2187
2203
.
34.
Thomas
 
K. A.
, and
Cook
 
S. D.
,
1985
, “
An evaluation of variables influencing implant fixation by direct bone apposition
,”
J. Biomed: Mat. Res.
, Vol.
19
, pp.
875
901
.
35.
Weinans
 
H.
,
Huiskes
 
R.
,
van Rietbergen
 
B.
,
Summer
 
D. R.
,
Turner
 
T. U.
, and
Galante
 
J. O.
,
1993
, “
Validation of adaptive bone-remodeling analysis to predict bone morphology around noncemented THA
,”
J. Orthop. Res.
, Vol.
11
, pp.
500
513
.
36.
Yang
 
R. J.
,
Choi
 
K. K.
,
Crowninshield
 
R. D.
, and
Brand
 
R. A.
,
1984
, “
Design sensitivity analysis: a new method for implant design and a comparison with parametric finite element analysis
,”
J. Biomech.
, Vol.
17
, pp.
849
854
.
This content is only available via PDF.
You do not currently have access to this content.