Although considerable effort has been made to understand the biomechanical behavior of the adult cervical spine, relatively little information is available on the response of the pediatric cervical spine to external forces. Since significant anatomical differences exist between the adult and pediatric cervical spines, distinct biomechanical responses are expected. The present study quantified the biomechanical responses of human pediatric spines by incorporating their unique developmental anatomical features. One-, three-, and six-year-old cervical spines were simulated using the finite element modeling technique, and their responses computed and compared with the adult spine response. The effects of pure overall structural scaling of the adult spine, local component developmental anatomy variations that occur to the actual pediatric spines, and structural scaling combined with local component anatomy variations on the responses of the pediatric spines were studied. Age- and component-related developmental anatomical features included variations in the ossification centers, cartilages, growth plates, vertebral centrum, facet joints, and annular fibers and nucleus pulposus of the intervertebral discs. The flexibility responses of the models were determined under pure compression, pure flexion, pure extension, and varying degrees of combined compression–flexion and compression–extension. The pediatric spine responses obtained with the pure overall (only geometric) scaling of the adult spine indicated that the flexibilities consistently increase in a uniform manner from six- to one-year-old spines under all loading cases. In contrast, incorporation of local anatomic changes specific to the pediatric spines of the three age groups (maintaining the same adult size) not only resulted in considerable increases in flexibilities, but the responses also varied as a function of the age of the pediatric spine and type of external loading. When the geometric scaling effects were added to these spines, the increases in flexibilities were slightly higher; however, the pattern of the responses remained the same as found in the previous approach. These results indicate that inclusion of developmental anatomical changes characteristic of the pediatric spines has more of a predominant effect on biomechanical responses than extrapolating responses of the adult spine based on pure overall geometric scaling. [S0148-0731(00)00501-X]

1.
Burdi
,
A. R.
,
Huelke
,
D. F.
,
Snyder
,
R. G.
, and
Lowrey
,
G. H.
,
1969
, “
Infants and Children in the Adult World of Automobile Safety Design: Pediatric and Anatomical Considerations for Design of Child Restraints
,”
J. Biomech.
,
2
, pp.
267
280
.
2.
Hayashi
,
K.
, and
Yabuki
,
T.
,
1985
, “
Origin of the Uncus and of Luschka’s Joint in the Cervical Spine
,”
J. Bone Joint Surg.
,
67A
, pp.
788
791
.
3.
Hindman
,
B.
, and
Poole
,
C.
,
1970
, “
Early Appearance of the Secondary Vertebral Ossification Centers
,”
Radiology
,
95
, pp.
359
361
.
4.
Knutsson
,
F.
,
1961
, “
Growth and Differentiation of Postnatal Vertebra
,”
Acta Radiol.
,
55
, pp.
401
408
.
5.
Roaf
,
R.
,
1960
, “
Vertebral Growth and Its Mechanical Control
,”
J. Bone Joint Surg.
,
42B
, pp.
40
59
.
6.
O’Rahilly, R., and Benson, D., 1985, “Development of Vertebral Column,” in: The Pediatric Spine, D. Bradford and R. Hensinger, eds., Thieme, Inc., New York, pp. 3–17.
7.
Sherk, H. H., Dunn, E. J., Eismont, F. J., Fielding, J. W., Long, D. M., Ono, K., Penning, L., and Raynor, R., 1989, The Cervical Spine, J. B. Lippincott Co., Philadelphia, PA.
8.
Peacock
,
A.
,
1956
, “
Observations on Postnatal Structure of Intervertebral Disc in Man
,”
J. Anat.
,
86
, pp.
162
179
.
9.
Taylor
,
J.
,
1975
, “
Growth of Human Intervertebral Discs and Vertebral Bodies
,”
J. Anat.
,
120
, pp.
49
68
.
10.
Kasai
,
T.
,
Ikata
,
T.
,
Katoh
,
S.
,
Miyake
,
R.
, and
Tsubo
,
M.
,
1996
, “
Growth of Cervical Spine With Special Reference to Its Lordosis and Mobility
,”
Spine
,
21
, pp.
2067
2073
.
11.
Bailey
,
D.
,
1952
, “
Normal Cervical Spine in Infants and Children
,”
Radiology
,
59
, pp.
712
719
.
12.
Kumaresan
,
S.
,
Yoganandan
,
N.
,
Pintar
,
F.
,
Voo
,
L.
,
Cusick
,
J.
, and
Larson
,
S.
,
1997
, “
Finite Element Modeling of Cervical Laminectomy With Graded Facetectomy
,”
J. Spinal Disord.
,
10
, pp.
40
47
.
13.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
1998
, “
Finite Element Modeling Approaches of Human Cervical Spine Facet Joint Capsule
,”
J. Biomech.
,
31
, pp.
371
376
.
14.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
1999
, “
Finite Element Analysis of the Cervical Spine: A Material Property Sensitivity Study
,”
Clinical Biomechanics
,
14
, pp.
41
53
.
15.
Yoganandan
,
N.
,
Kumaresan
,
S.
,
Voo
,
L.
, and
Pintar
,
F.
,
1997
, “
Finite Element Model of the Human Lower Cervical Spine
,”
ASME J. Biomech. Eng.
,
119
, pp.
87
92
.
16.
Gosh, P., 1988, Biology of the Intervertebral Disc, CRC Press, Inc., Boca Raton, FL.
17.
Pooni
,
J. S.
,
Hukins
,
D. W.
,
Harris
,
P. F.
,
Hilton
,
R. C.
, and
Davies
,
K. E.
,
1986
, “
Comparison of the Structure of Human Intervertebral Discs in the Cervical, Thoracic and Lumbar Regions of the Spine
,”
Surg. Radiol Anat.
,
8
, pp.
175
182
.
18.
Shirazi-Adl
,
S. A.
,
Shrivastava
,
S. C.
, and
Ahmed
,
A. M.
,
1984
, “
Stress Analysis of the Lumbar Disc-Body Unit in Compression: A Three-Dimensional Nonlinear Finite Element Study
,”
Spine
,
9
, pp.
120
134
.
19.
Spilker
,
R.
,
Jacobs
,
D.
, and
Schultz
,
A.
,
1986
, “
Material Constants for a Finite Element Model of the Intervertebral Disk With a Fiber Composite Annulus
,”
ASME J. Biomech. Eng.
,
108
, pp.
1
11
.
20.
Clausen, J. D., 1996, “Experimental and Theoretical Investigation of Cervical Spine Biomechanics: Effects of Injury and Stabilization,” Ph.D. thesis, University of Iowa, Iowa City.
21.
Ueno
,
K.
, and
Liu
,
Y. K.
,
1987
, “
A Three Dimensional Nonlinear Finite Element Model of Lumbar Intervertebral Joint in Torsion
,”
ASME J. Biomech. Eng.
,
109
, pp.
200
209
.
22.
Galante
,
J. O.
,
1967
, “
Tensile Properties of the Human Lumbar Annulus Fibrosus
,”
Acta Orthop. Scand. Suppl.
,
100
, p.
1
91
.
23.
Goel
,
V. K.
, and
Clausen
,
J. D.
,
1998
, “
Prediction of Load Sharing Among Spinal Components of a C5–C6 Motion Segment Using the Finite Element Approach
,”
Spine
,
23
, pp.
684
691
.
24.
Goel
,
V. K.
,
Monroe
,
B. T.
,
Gilbertson
,
L. G.
, and
Brinckmann
,
P.
,
1995
, “
Interlaminar Shear Stresses and Laminae Separation in a Disc: Finite Element Analysis of the L3–4 Motion Segment Subjected to Axial Compressive Loads
,”
Spine
,
20
, pp.
689
698
.
25.
Kempson, G. E., 1979, “Mechanical Properties of Articular Cartilage.” in: Adult Articular Cartilage, Pitman, Kent, England, pp. 333–414.
26.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
1997
, “
Adult and Pediatric Human Cervical Spine Finite Element Analyses
,”
ASME BED
,
35
, pp.
515
516
.
27.
Lavaste
,
F.
,
Skalli
,
W.
,
Robin
,
S.
,
Roy-Camille
,
R.
, and
Mazel
,
C.
,
1992
, “
Three Dimensional Geometrical and Mechanical Modeling of the Lumbar Spine
,”
J. Biomech.
,
25
, pp.
1153
1164
.
28.
Lindahl
,
D.
,
1975
, “
Mechanical Properties of Dried Spongy Bone
,”
Acta Orthop. Scand.
,
47
, pp.
11
19
.
29.
Melvin, J. W., 1995, “Injury Assessment Reference Values for the CRABI 6-Month Infant Dummy in a Rear-Facing Infant Restraint With Airbag Deployment,” Proc. SAE Congress and Exposition, pp. 1–12.
30.
Pintar, F. A., 1986, “Biomechanics of Spinal Elements,” Doctoral Dissertation, Marquette University, Milwaukee, WI.
31.
Sharma
,
M.
,
Langrana
,
N. A.
, and
Rodriguez
,
J.
,
1995
, “
Role of Ligaments and Facets in Lumbar Spinal Stability
,”
Spine
,
20
, pp.
887
900
.
32.
Wu
,
H. C.
, and
Yao
,
R. F.
,
1976
, “
Mechanical Behavior of the Human Anulus Fibrosus
,”
J. Biomech.
,
9
, pp.
1
7
.
33.
Yamada, H., 1970, Strength of Biological Materials, Williams & Wilkins, Baltimore, MD.
34.
ABAQUS, 1994, “ABAQUS—Standard User’s Manual,” Hibbitt, Karlsson & Sorensen, Inc.
35.
I-DEAS, 1994, “I-DEAS MS,” Structural Dynamics Research Corporation, Milford, OH.
36.
Snyder. R. G., 1977, “Anthropometry of Infants, Children, and Youths to Age 18 for Product Safety Design,” University of Michigan.
37.
Kleinberger, M., 1993, “Application of Finite Element Techniques to the Study of Cervical Spine Mechanics,” Proc. 37th Stapp Car Crash Conference, pp. 261–272.
38.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F.
,
1997
, “
Finite Element Analysis of Anterior Cervical Spine Interbody Fusion
,”
Biomed. Mat. & Eng.
,
7
, pp.
221
230
.
39.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
1997
, “
Pediatric Neck Modeling Using Finite Element Analysis
,”
Inter. J. Crashworthiness
,
2
, pp.
367
377
.
40.
Langrana
,
N. A.
,
Lee
,
C. K.
, and
Yang
,
S. W.
,
1991
, “
Finite Element Modeling of the Synthetic Intervertebral Disc
,”
Spine
,
16
, pp.
245–S252
245–S252
.
41.
Martinez, M., Anderson, R., Hart, R., Bundy, K., Dinh, D., Hew, M., and Aydin, F., 1997, “Titanium Release From T1-6AL-4V Cervical Spine Plates: A Computational and Experimental Study in the Canine Model,” Proc. 43rd Orthopaedic Research Society, p. 215–236.
42.
Maurel
,
N.
,
Lavaste
,
F.
, and
Skalli
,
W.
,
1997
, “
A Three Dimensional Parameterized Finite Element Model of the Lower Cervical Spine. Study of the Influence of the Posterior Articular Facets
,”
J. Biomech.
,
30
, pp.
921
931
.
43.
Yoganandan
,
N.
,
Kumaresan
,
S.
,
Voo
,
L.
, and
Pintar
,
F.
,
1996
, “
Finite Element Applications in Human Cervical Spine Modeling
,”
Spine
,
21
, pp.
1824
1834
.
44.
Yoganandan
,
N.
,
Myklebust
,
J. B.
,
Ray
,
G.
, and
Sances
,
A.
, Jr.
,
1987
, “
Mathematical and Finite Element Analysis of Spinal Injuries
,”
Crit. Rev. Biomed. Eng.
,
15
, pp.
29
93
.
45.
Yoganandan, N., Pintar, F. A., Larson, S. J., Sances, A., Jr., eds., 1998, Frontiers in Head and Neck Trauma: Clinical and Biomechanical, IOS Press, Amsterdam, Netherlands.
46.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
1997
, “
Methodology to Quantify the Uncovertebral Joint in the Human Cervical Spine
,”
J. Musculoskeletal Research
,
1
, pp.
131
139
.
47.
Natarajan
,
R. N.
,
Ke
,
J. H.
, and
Andersson
,
B. J.
,
1994
, “
A Model to Study the Disc Degeneration Process
,”
Spine
,
19
, pp.
259
265
.
48.
Ueno, K., 1984, “A Three Dimensional Nonlinear Finite Element Model of Lumbar Intervertebral Joint,” University of Iowa.
49.
Goel
,
V. K.
,
Kim
,
Y. E.
,
Lim
,
T. H.
, and
Weinstein
,
J. N.
,
1988
, “
An Analytical Investigation of the Mechanics of Spinal Instrumentation
,”
Spine
,
13
, pp.
1003
1011
.
50.
Saito
,
T.
,
Yamamuro
,
T.
,
Shikata
,
J.
,
Oka
,
M.
, and
Tsutsumi
,
S.
,
1991
, “
Analysis and Prevention of Spinal Column Deformity Following Cervical Laminectomy. I. Pathogenetic Analysis of Postlaminectomy Deformities
,”
Spine
,
16
, pp.
494
502
.
You do not currently have access to this content.