The observation of intimal hyperplasia at bypass graft anastomoses has suggested a potential interaction between local hemodynamics and vascular wall response. Wall shear has been particularly implicated because of its known effects upon the endothelium of normal vessels and, thus, was examined as to its possible role in the development of intimal hyperplasia in arterial bypass graft distal anastomoses. Tapered (4–7 mm I.D.) e-PTFE synthetic grafts 6 cm long were placed as bilateral carotid artery bypasses in six adult, mongrel dogs weighing between 25 and 30 kg with distal anastomotic graft-to-artery diameter ratios (DR) of either 1.0 or 1.5. Immediately following implantation, simultaneous axial velocity measurements were made in the toe and artery floor regions in the plane of the anastomosis at radial increments of 0.35 mm, 0.70 mm, and 1.05 mm using a specially designed 20 MHz triple crystal ultrasonic wall shear rate transducer. Mean, peak, and pulse amplitude wall shear rates (WSRs), their absolute values, the spatial and temporal wall shear stress gradients (WSSG), and the oscillatory shear index (OSI) were computed from these velocity measurements. All grafts were harvested after 12 weeks implantation and measurements of the degree of intimal hyperplasia (IH) were made along the toe region and the artery floor of the host artery in 1 mm increments. While some IH occurred along the toe region (8.35±23.1 μm) and was significantly different between DR groups p<0.003, the greatest amount occurred along the artery floor (81.6±106.5 μm, mean±S.D.) p<0.001 although no significant differences were found between DR groups. Linear regressions were performed on the paired IH and mean, peak, and pulse amplitude WSR data as well as the absolute mean, peak, and pulse amplitude WSR data from all grafts. The mean and absolute mean WSRs showed a modest correlation with IH (r=0.406 and −0.370, respectively) with further improvements seen (r=0.482 and −0.445, respectively) when using an exponential relationship. The overall best correlation was seen against an exponential function of the OSI r=0.600. Although these correlation coefficients were not high, they were found to be statistically significant as evidenced by the large F-statistic obtained. Finally, it was observed that over 75 percent of the IH occurred at or below a mean WSR value of 100 s−1 while approximately 92 percent of the IH occurred at or below a mean WSR equal to one-half that of the native artery. Therefore, while not being the only factor involved, wall shear (and in particular, oscillatory wall shear) appears to provide a stimulus for the development of anastomotic intimal hyperplasia.

1.
Whittemore
,
A. D.
,
Clowes
,
A. W.
, et al.
,
1981
, “
Secondary Femoro-Popliteal Reconstruction
,”
Ann. Surg.
,
193
, pp.
35
42
.
2.
Szilagyi
,
D. E.
,
Elliott
,
J. P.
, et al.
,
1973
, “
Biologic Fate of Autogenous Vein Implants as Arterial Substitutes: Clinical, Angiographic and Histopathologic Observations in Femoro-popliteal Operations for Atherosclerosis
,”
Ann. Surg.
,
178
, pp.
232
246
.
3.
Dilley
,
R. J.
,
McGeachie
,
J. K.
, and
Prendergast
,
F. J.
,
1988
, “
A Review of the Histologic Changes in Vein-to-Artery Grafts, With Particular Reference to Intimal Hyperplasia
,”
Arch. Surg.
,
195
, pp.
691
696
.
4.
DeWeese, J. A., 1978, “Anastomotic Neointimal Hyperplasia,” in: Vascular Grafts, P. N. Sawyer and M. J. Kaplitt, eds., New York: Apple-Century-Crofts, pp. 291–307.
5.
Madras
,
P. N.
,
Ward
,
C. A.
, et al.
,
1981
, “
Anastomotic Hyperplasia
,”
Surgery
,
90
, pp.
922
923
.
6.
Clowes
,
A. W.
,
Gown
,
A. M.
, et al.
,
1985
, “
Mechanisms of Arterial Graft Failure: I. Role of Cellular Proliferation in Early Healing of PTFE Prostheses
,”
Am. J. Pathol.
,
118
, pp.
43
54
.
7.
Veith
,
F. J.
,
Gupta
,
S.
, and
Daly
,
V.
,
1980
, “
Management of Early and Late Thrombosis of Expanded Polytetrafluoroethylene (PTFE) Femoropopliteal Bypass Grafts: Favorable Prognosis with Appropriate Reoperation
,”
Surgery
,
87
, pp.
581
587
.
8.
Sottiurai
,
V. S.
,
Yao
,
J. S.
, et al.
,
1989
, “
Distal Anastomotic Intimal Hyperplasia: Histopathologic Character and Biogenesis
,”
Ann. Vasc. Surg.
,
3
, No.
1
, pp.
26
33
.
9.
Clowes
,
A. W.
,
Kirkman
,
T. R.
, and
Clowes
,
M. M.
,
1986
, “
Mechanism of Arterial Graft Failure. II. Chronic Endothelial and Smooth Muscle Cell Proliferation in Healing PTFE Prostheses
,”
J. Vasc. Surg.
,
3
, pp.
877
884
.
10.
Bandyk
,
D. F.
,
Seabrook
,
G. R.
, and
Moldenhauer
,
P.
,
1988
, “
Hemodynamics of Vein Graft Stenosis
,”
J. Vasc. Surg.
,
8
, pp.
688
695
.
11.
Clowes
,
A. W.
, and
Clowes
,
M. M.
,
1980
, “
The Influence of Hypertension on Injury-Induced Myointimal Thickening
,”
Surgery
,
88
, pp.
254
259
.
12.
Dobrin
,
P. B.
,
Littooy
,
F. N.
, and
Endean
,
E. D.
,
1989
, “
Mechanical Factors Predisposing to Intimal Hyperplasia and Medial Thickening in Autogenous Vein Grafts
,”
Surgery
,
105
, pp.
393
400
.
13.
Kraiss
,
L. W.
,
Geary
,
R. L.
,
Mattsson
,
E. J. R.
,
Vergel
,
S.
,
Au
,
Y. P. T.
, and
Clowes
,
A. W.
,
1996
, “
Acute Reductions in Blood Flow and Shear Stress Induce Platelet-Derived Growth Factor-A Expression in Baboon Prosthetic Grafts
,”
Circ. Res.
,
79
, pp.
45
53
.
14.
Pompeselli
,
F.
,
Schoen
,
P.
, et al.
,
1987
, “
Conformational Stress Anastomotic Hyperplasia
,”
J. Vasc. Surg.
,
1
, pp.
525
535
.
15.
Zwolak
,
R. M.
,
Adams
,
M. C.
, and
Clowes
,
A. W.
,
1987
, “
Kinetics of Vein Graft Hyperplasia: Association With Tangential Stress
,”
J. Vasc. Surg.
,
5
, pp.
126
136
.
16.
Rittgers
,
S. E.
,
Karayannacos
,
P. E.
, et al.
,
1978
, “
Velocity Distribution and Intimal Proliferation in Autologous Vein Grafts in Dogs
,”
Circ. Res.
,
42
, pp.
792
801
.
17.
Bassiouny
,
H. S.
,
Lieber
,
B. B.
, et al.
,
1988
, “
Quantitative Inverse Correlation of Wall Shear Stress With Experimental Intimal Thickening
,”
Surg. Forum: Cong. Amer. Coll. Surg.
,
39
, pp.
328
329
.
18.
Chevru
,
A.
, and
Moore
,
W. S.
,
1990
, “
An Overview of Intimal Hyperplasia
,”
SG & O
,
171
, pp.
433
447
.
19.
Brewster
,
D. C.
,
LaSalle
,
A. J.
, et al.
,
1983
, “
Factors Affecting Patency of Femoro-popliteal Bypass Grafts
,”
Surgery
,
157
, pp.
437
442
.
20.
Dardik
,
H.
,
Sussman
,
B.
, et al.
,
1983
, “
Distal Arteriovenous Fistula as an Adjunct to Maintaining Arterial and Graft Patency for Limb Salvage
,”
Surgery
,
94
, pp.
478
476
.
21.
Bharadvaj, B. K., Daddario, D. M., et al., 1982, “Flow Studies at Arterial Anastomoses,” Proc. 35th ACEMB, Philadelphia.
22.
Binns
,
R. L.
,
Ku
,
D. N.
, et al.
,
1989
, “
Optimal Graft Diameter: Effect of Wall Shear Stress on Vascular Healing
,”
J. Vasc. Surg.
,
10
, pp.
326
327
.
23.
Morinaga
,
K.
,
Okadome
,
K.
, et al.
,
1985
, “
Effect of Wall Shear Stress on Intimal Thickening of Arterially Transplanted Autogenous Veins in Dogs
,”
J. Vasc. Surg.
,
2
, pp.
430
433
.
24.
White
,
S. S.
,
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Bassiouny
,
H.
,
Loth
,
F.
,
Jones
,
S. A.
, and
Glagov
,
S.
,
1993
, “
Hemodynamic Patterns in Two Flow Models of End-to-Side Vascular Graft Anastomoses: Effects of Pulsatility, Flow Division, Reynolds Number, and Hood Length
,”
ASME J. Biomech. Eng.
,
115
, pp.
104
111
.
25.
LoGerfo
,
F. W.
,
Quist
,
W. C.
, et al.
,
1983
, “
Downstream Anastomotic Hyperplasia
,”
Ann. Surg.
,
197
, No.
4
, pp.
479
483
.
26.
Loth
,
F.
,
Jones
,
S. A.
,
Giddens
,
D. P.
,
Bassiouny
,
H. S.
,
Glagov
,
S.
, and
Zarins
,
C. K.
,
1997
, “
Measurements of Velocity and Wall Shear Stress Inside a PTFE Vascular Graft Model Under Steady Flow Conditions
,”
ASME J. Biomech. Eng.
,
119
, pp.
187
194
.
27.
Papadaki
,
M.
and
Eskin
,
S. G.
,
1997
, “
Effects of Fluid Shear Stress on Gene Regulation of Vascular Cells
,”
Biotechnol. Prog.
,
13
, pp.
209
221
.
28.
Traub
,
O.
and
Berk
,
B. C.
,
1998
, “
Laminar Shear Stress: Mechanisms by Which Endothelial Cells Transduce an Atheroprotective Force
,”
Arterioscler. Thromb. Vasc. Biol.
,
18
, pp.
677
685
.
29.
Steinman
,
D. A.
,
Vinh
,
B.
, et al.
,
1993
, “
A Numerical Simulation of Flow in a Two-Dimensional End-to-Side Anastomosis Model
,”
ASME J. Biomech. Eng.
,
115
, pp.
112
118
.
30.
Ojha
,
M.
,
1993
, “
Spatial and Temporal Variations of Wall Shear Stress Within an End-to-Side Arterial Anastomosis Model
,”
J. Biomech.
,
26
, No.
12
, pp.
1377
1388
.
31.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation Between Plaque Location and Low and Oscillating Shear Stress
,”
Arteriosclerosis
,
5
, No.
3
, pp.
293
302
.
32.
He
,
X.
, and
Ku
,
D. N.
,
1996
, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
,
118
, pp.
74
82
.
33.
Bond
,
M. G.
,
Hostetler
,
J. R.
, et al.
,
1976
, “
Intimal Changes in Arterio-venous Bypass Grafts
,”
J. Thorac. Cardiovasc. Surg.
,
71
, pp.
907
916
.
34.
Crawshaw
,
H. M.
,
Quist
,
W. C.
, et al.
,
1980
, “
Flow Disturbances at the Distal End-to-Side Anastomosis
,”
Arch. Surg.
,
115
, pp.
1280
1284
.
35.
Nowalk
,
M. D.
,
Logerfo
,
F. W.
, and
Quist
,
W. C.
,
1982
, “
Models of Side-to-end Anastomoses: Effects of Angle and Flow Split
,”
J. Surg. Res.
,
32
, pp.
489
498
.
36.
Keynton
,
R. S.
,
Shu
,
M. C. S.
, and
Rittgers
,
S. E.
,
1991
, “
The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: An In Vitro Model Study
,”
ASME J. Biomech. Eng.
,
113
, pp.
458
463
.
37.
Callow, A. D., 1986, “History of Vascular Graft Development,” in: Vascular Graft Update: Safety and Performance, 1st ed., Philadelphia: American Society for Testing and Materials, pp. 11–15.
38.
Sanders
,
R. J.
,
Kempczinski
,
R. F.
,
Hammond
,
W.
, and
DiClementi
,
D.
,
1980
, “
The Significance of Graft Diameter
,”
Surgery
,
88
, pp.
856
866
.
39.
Keynton
,
R. S.
,
Evancho
,
M. M.
,
Sims
,
R. L.
, and
Rittgers
,
S. E.
,
1999
, “
The Effect of Graft Caliber Upon Wall Shear Within in Vivo Distal Vascular Anastomoses
,”
ASME J. Biomech. Eng.
,
121
, pp.
79
88
.
40.
Keynton
,
R. S.
,
Nemer
,
R. E.
,
Neifert
,
Q. Y.
,
Fatemi
,
R. S.
, and
Rittgers
,
S. E.
,
1995
, “
Design, Fabrication and in Vitro Evaluation of an in Vivo Ultrasonic Doppler Wall Shear Rate Measuring Device
,”
IEEE Trans. Biomed. Eng.
,
42
, pp.
433
441
.
41.
Ando
,
J.
,
Ohtsuka
,
A.
, et al.
,
1993
, “
Wall Shear Stress Rather Than Shear Rate Regulates Cytoplasmic Ca++ Responses to Flow in Vascular Endothelial Cells
,”
Biochem. Biophys. Res. Commun.
,
190
, No.
3
, pp.
716
723
.
42.
Sharefkin
,
J. B.
,
Diamond
,
S. L.
,
Eskin
,
S. G.
,
McIntire
,
L. V.
, and
Dieffenbach
,
C. W.
,
1991
, “
Fluid Flow Decreases Preproendothelin mRNA Levels and Suppresses Endothelin-1 Peptide Release in Cultured Human Endothelial Cells
,”
J. Vasc. Surg.
,
14
, pp.
1
9
.
43.
Ziegler
,
T.
,
Bouzourene
,
K.
,
Harrison
,
V. J.
,
Brunner
,
H. R.
, and
Hayoz
,
D.
,
1998
, “
Influence of Oscillatory and Unidirectional Flow Environments on the Expression of Endothelin and Nitric Oxide Synthase in Cultured Endothelial Cells
,”
Arterioscler. Thromb. Vasc. Biol.
,
18
, pp.
686
692
.
44.
Bassiouny
,
H. S.
,
White
,
S.
,
Glagov
,
S.
,
Choi
,
E.
,
Giddens
,
D. P.
, and
Zarins
,
C. K.
,
1992
, “
Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced
,”
J. Vasc. Surg.
,
15
, pp.
708
716
.
45.
Glagov
,
S.
,
Weisenberg
,
E.
,
Zarins
,
C. K.
,
Stankunavicius
,
R.
, and
Kolettes
,
G. J.
,
1987
, “
Compensatory Enlargement of Human Atherosclerotic Coronary Arteries
,”
New. Engl. J. Med.
,
316
, pp.
1371
1375
.
46.
Ojha
,
M.
,
1994
, “
Wall Shear Stress Temporal Gradient and Anastomotic Intimal Hyperplasia
,”
Circ. Res.
,
74
, pp.
1227
1231
.
47.
Kleinstreuer
,
C.
,
Lei
,
M.
, and
Archie
,
J. P.
, Jr.
,
1996
, “
Flow Input Waveform Effects on the Temporal and Spatial Shear Stress Gradients in a Femoral Graft-Artery Connector
,”
ASME J. Biomech. Eng.
,
118
, pp.
506
510
.
You do not currently have access to this content.