The flow field less than one diameter downstream of the end of a collapsible tube executing self-excited oscillations was examined using a two-component fiber-optic laser-Doppler anemometer. The time-averaged Reynolds number of the flow was 11,000. With the tube oscillating periodically, results obtained during many cycles of oscillation were combined to yield surface plots of the axial component over the cross section at 16 phases of the cycle. By combining measurements obtained with the laser probe in two different orientations, secondary flow vectors over the cross section were likewise constructed for 16 phases. The measurements showed strongly phasic turbulence intensity, with the phase of high intensity coinciding with the time of maximal tube collapse. Reverse flow occurred during much of the cycle, at places in the cross section that agree with our previous observations of laminar and turbulent steady flow through a rigid simulated collapsed tube.

1.
Conrad
,
W. A.
,
1969
, “
Pressure-Flow Relationships in Collapsible Tubes
,”
IEEE Trans. Biomed. Eng.
,
16
, pp.
284
295
.
2.
Bertram
,
C. D.
, and
Pedley
,
T. J.
,
1982
, “
A Mathematical Model of Unsteady Collapsible Tube Behavior
,”
J. Biomech.
,
15
, pp.
39
50
.
3.
Fodil
,
R.
,
Ribreau
,
C.
,
Louis
,
B.
,
Lofaso
,
F.
, and
Isabey
,
D.
,
1997
, “
Interaction Between Steady Flow and Individualised Compliant Segments: Application to Upper Airways
,”
Med. Biol. Eng. Comput.
,
35
, pp.
638
648
.
4.
Cancelli
,
C.
, and
Pedley
,
T. J.
,
1985
, “
A Separated-Flow Model for Collapsible-Tube Oscillations
,”
J. Fluid Mech.
,
157
, pp.
375
404
.
5.
Jensen
,
O. E.
,
1992
, “
Chaotic Oscillations in a Simple Collapsible-Tube Model
,”
ASME J. Biomech. Eng.
,
114
, pp.
55
59
.
6.
Walsh
,
C.
,
1995
, “
Flutter in One-Dimensional Collapsible Tubes
,”
J. Fluids Struct.
,
9
, pp.
393
408
.
7.
Matsuzaki, Y., and Seike, K., 1996, “Numerical Analysis of Flow in a Collapsible Vessel Based on Unsteady and Quasi-Steady Flow Theories,” Computational Biomechanics, K. Hayashi and H. Ishikawa, eds., Springer-Verlag, Tokyo, pp. 185–198.
8.
Hayashi
,
S.
,
Hayase
,
T.
, and
Kawamura
,
H.
,
1998
, “
Numerical Analysis for Stability and Self-Excited Oscillation in Collapsible Tube Flow
,”
ASME J. Biomech. Eng.
,
120
,
468
475
.
9.
Grotberg
,
J. B.
, and
Gavriely
,
N.
,
1989
, “
Flutter in Collapsible Tubes: A Theoretical Model of Wheezes
,”
J. Appl. Physiol.
,
66
, pp.
2262
2273
.
10.
Luo
,
X.-Y.
, and
Pedley
,
T. J.
,
1998
, “
The Effects of Wall Inertia on Flow in a Two-Dimensional Collapsible Channel
,”
J. Fluid Mech.
,
363
, pp.
253
280
.
11.
Heil
,
M.
,
1997
, “
Stokes Flow in Collapsible Tubes: Computation and Experiment
,”
J. Fluid Mech.
,
353
, pp.
285
312
.
12.
Ikeda
,
T.
, and
Matsuzaki
,
Y.
,
1999
, “
A One-Dimensional Unsteady Separable and Reattachable Flow Model for Collapsible Tube-Flow Analysis
,”
ASME J. Biomech. Eng.
,
121
, pp.
153
159
.
13.
Pedley
,
T. J.
, and
Stephanoff
,
K. D.
,
1985
, “
Flow Along a Channel With a Time-Dependent Indentation in One Wall: The Generation of Vorticity Waves
,”
J. Fluid Mech.
,
160
, pp.
337
367
.
14.
Matsuzaki
,
Y.
,
Ikeda
,
T.
,
Matsumoto
,
T.
, and
Kitagawa
,
T.
,
1998
, “
Experiments on Steady and Oscillatory Flows at Moderate Reynolds Numbers in a Quasi-Two-Dimensional Channel With a Throat
,”
ASME J. Biomech. Eng.
,
120
, pp.
594
601
.
15.
Flaherty
,
J. E.
,
Keller
,
J. B.
, and
Rubinow
,
S. I.
,
1972
, “
Post Buckling Behavior of Elastic Tubes and Rings With Opposite Sides in Contact
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
23
, pp.
446
455
.
16.
Bertram
,
C. D.
, and
Godbole
,
S. A.
,
1997
, “
LDA Measurements of Velocities in a Simulated Collapsed Tube
,”
ASME J. Biomech. Eng.
,
119
, pp.
357
363
.
17.
Bertram
,
C. D.
,
Muller
,
M.
,
Ramus
,
F.
, and
Nugent
,
A. H.
,
2001
, “
Measurements of Steady Turbulent Flow Through a Rigid Simulated Collapsed Tube
,”
Med. Biol. Eng. Computing
,
39
, pp.
422
427
.
18.
Liepsch
,
D.
, and
Moravec
,
S.
,
1984
, “
Pulsatile Flow of Non-Newtonian Fluid in Distensible Models of Human Arteries
,”
Biorheology
,
21
, pp.
571
586
.
19.
Liepsch
,
D.
,
Moravec
,
S.
, and
Baumgart
,
R.
,
1992
, “
Some Flow Visualization and Laser-Doppler-Velocity Measurements in a True-to-Scale Elastic Model of a Human Aortic Arch — A New Model Technique
,”
Biorheology
,
29
, pp.
563
580
.
20.
Ohba, K., Sakurai, A., and Oka, J., 1989, “Self-Excited Oscillation of Flow in Collapsible Tube. IV (Laser-Doppler Measurement of Local Flow Field),” Technology Reports of Kansai University, No. 31, pp. 1–11.
21.
Bertram
,
C. D.
,
1987
, “
The Effects of Wall Thickness, Axial Strain and End Proximity on the Pressure-Area Relation of Collapsible Tubes
,”
J. Biomech.
,
20
, pp.
863
876
.
22.
Bertram
,
C. D.
,
1986
, “
An Adjustable Hydrostatic-Head Source Using Compressed Air
,”
J. Phys. E
,
19
, pp.
201
202
.
23.
Bertram
,
C. D.
, and
Godbole
,
S. A.
,
1995
, “
Area and Pressure Profiles for Collapsible Tube Oscillations of Three Types
,”
J. Fluids Struct.
,
9
, pp.
257
277
.
24.
Tennekes, H., and Lumley, J. L., 1972, A First Course in Turbulence, MIT Press, Cambridge, MA.
25.
Moore, J. E., Jr., Stergiopulos, N., Golay, X., Ku, D. N., and Meister, J.-J., 1995, “Flow Measurements in Collapsed Stenotic Arterial Models,” Proc. ASME Bioengineering Conference, ASME BED-Vol. 29, R. M. Hochmuth et al., eds., pp. 229–230.
26.
Bertram, C. D., and Godbole, S. A., 1995, “LDA Measurements of Velocities in a Simulated Collapsed Tube,” Proc. ASME Bioengineering Conference, ASME BED-Vol. 29, R. M. Hochmuth et al., eds., pp. 231–232.
27.
Benmbarek, M., Thiriet, M., Naili, S., and Ribreau, C., 1998, “A Three-Dimensional Numerical Model of a Critical Flow in a Collapsed Tube,” Abstr. 3rd World Congress of Biomechanics, Y. Matsuzaki et al., eds., Sapporo, Japan, 2–8 Aug. 1998, p. 37.
28.
Benmbarek, M., 1997, “Ecoulement Laminaire Permanent Dans un Mode`le de Veine,” The`se de Doctorat, Universite´ de Paris 12 Val-de-Marne, Cre´teil, France.
29.
Bertram
,
C. D.
, and
Pedley
,
T. J.
,
1983
, “
Steady and Unsteady Separation in an Approximately Two-Dimensional Indented Channel
,”
J. Fluid Mech.
,
130
, pp.
315
345
.
You do not currently have access to this content.