In-vitro tissue culture experiments were performed to study the effects of static stress on the mechanical properties of collagen fascicles obtained from the rabbit patellar tendon. After collagen fascicles having the diameter of approximately 300 μm were cultured for 1 and 2 wk under static stress between 0 and 3 MPa, their mechanical properties and crimp morphology were determined using a micro-tensile tester and a light microscope, respectively. The tensile strength and tangent modulus of the fascicles were significantly decreased by culture under no load compared to control fascicles. A statistically significant correlation, which was described by a quadratic curve, was observed between applied stress and tensile strength. The maximum tensile strength (16.7 MPa) was obtained at the applied stress of 1.2 MPa; the strength was within a range of control values. There was a similar correlation between applied stress and tangent modulus, and the modulus was maintained at control level under 1.3 MPa stress. The stress of 1.2 to 1.3 MPa is equivalent to approximately 50 percent of the peak stress developed in the intact rabbit patellar tendon by running. Strain at failure of cultured collagen fascicles was negatively correlated with applied stress, and that at 1.2 to 1.3 MPa stress was almost the same as the control value. Crimp morphology in the fascicles cultured under about 1.2 MPa stress was similar to that in control fascicles. These results indicate that cultured collagen fascicles change the mechanical properties and structure in response to static tensile stress. In addition, their mechanical properties and structure are maintained at control level if the static stress of 50 percent of in-vivo peak stress is applied.

1.
Hayashi
,
K.
,
1996
, “
Biomechanical Studies of the Remodeling of Knee Joint Tendons and Ligaments
,”
J. Biomech.
,
29
, pp.
707
716
.
2.
Yasuda
,
K.
, and
Hayashi
,
K.
,
1999
, “
Changes in Biomechanical Properties of Tendons and Ligaments From Joint Disuse
,”
Osteoarthritis and Cartilage
,
7
, pp.
122
129
.
3.
Woo
,
S. L.-Y.
,
Ritter
,
M. A.
,
Amiel
,
D.
,
Sanders
,
T. M.
,
Gomez
,
M. A.
,
Kuei
,
S. C.
,
Garfin
,
S. R.
, and
Akeson
,
W. H.
,
1980
, “
The Biomechanical and Biochemical Properties of Swine Tendons - Long Term Effects of Exercise on the Digital Extensors
,”
Connect. Tissue Res.
,
7
, pp.
177
183
.
4.
Tipton
,
C. M.
,
Vailas
,
A. C.
, and
Matthes
,
R. D.
,
1986
, “
Experimental Studies on the Influences of Physical Activity on Ligaments, Tendons, and Joint: A Brief Review
,”
Acta Med. Scand., Suppl.
,
711
, pp.
157
168
.
5.
Noyes
,
F. R.
,
1977
, “
Functional Properties of Knee Ligaments and Alterations Induced by Immobilization. A Correlative Biomechanical and Histological Study in Primates
,”
Clin. Orthop.
,
123
, pp.
210
242
.
6.
Woo
,
S. L.-Y
,
Gomez
,
M. A.
,
Sites
,
T. J.
,
Newton
,
P. O.
,
Orlando
,
C. A.
, and
Akeson
,
W. H.
,
1987
, “
The Biomechanical and Morphological Changes in the Medial Collateral Ligament of the Rabbit After Immobilization and Remobilization
,”
J. Bone Jt. Surg. Am.
,
69A
, pp.
1200
1211
.
7.
Loitz
,
B. J.
,
Zernicke
,
R. F.
,
Vailas
,
A. C.
,
Kody
,
M. H.
, and
Burstein
,
A. H.
,
1989
, “
Effects of Short-Term Immobilization Versus Continuous Passive Motion in a Non-Weight-Bearing Model
,”
Clin. Orthop.
,
244
, pp.
265
271
.
8.
Yamamoto
,
N.
,
Ohno
,
K.
,
Hayashi
,
K.
,
Kuriyama
,
H.
,
Yasuda
,
K.
, and
Kaneda
,
K.
,
1993
, “
Effects of Stress Shielding on the Mechanical Properties of Rabbit Patellar Tendon
,”
ASME J. Biomech. Eng.
,
115
, pp.
23
28
.
9.
Majima
,
T.
,
Yasuda
,
K.
,
Fujii
,
T.
,
Yamamoto
,
N.
,
Hayashi
,
K.
, and
Kaneda
,
K.
,
1996
, “
Biomechanical Effects of Stress Shielding of the Rabbit Patellar Tendon Depend on the Degree of Stress Reduction
,”
J. Orthop. Res.
,
14
, pp.
377
383
.
10.
Hayashi, K., Yamamoto, N., and Yasuda, K., 1996, “Response of Knee Joint Tendons and Ligaments to Mechanical Stress,” Biomechanics - Functional Adaptation and Remodeling, Hayashi, K., Kamiya, A., and Ono, K., eds., Springer-Verlag, Tokyo, Japan, pp. 185–212.
11.
Yamamoto
,
N.
,
Hayashi
,
K.
,
Kuriyama
,
H.
,
Ohno
,
K.
,
Yasuda
,
K.
, and
Kaneda
,
K.
,
1996
, “
Effects of Restressing on the Mechanical Properties of Stress-Shielded Patellar Tendons in Rabbits
,”
ASME J. Biomech. Eng.
,
118
, pp.
216
220
.
12.
Yamamoto
,
N.
,
Hayashi
,
K.
,
Hayashi
,
F.
,
Yasuda
,
K.
, and
Kaneda
,
K.
,
1999
, “
Biomechanical Studies of the Rabbit Patellar Tendon After Removal of Its One-Fourth or a Half
,”
ASME J. Biomech. Eng.
,
121
, pp.
323
329
.
13.
Slack
,
C.
,
Flint
,
M. H.
, and
Thompson
,
B. M.
,
1984
, “
The Effects of Tensional Load on Isolated Embryonic Chick Tendons in Organ Culture
,”
Connect. Tissue Res.
,
12
, pp.
229
247
.
14.
Koob
,
T. J.
, and
Vogel
,
K. G.
,
1987
, “
Proteoglycan Synthesis on Organ Cultures from Regions of Bovine Tendon Subjected to Different Mechanical Forces
,”
Biochem. J.
,
246
, pp.
589
598
.
15.
Vogel
,
K. G.
,
1996
, “
The Effects of Compressive Loading on Proteoglycan Turnover in Cultured Fetal Tendon
,”
Connect. Tissue Res.
,
34
, pp.
227
237
.
16.
Hannafin
,
J. A.
,
Arnoczky
,
S. P.
,
Hoonjan
,
A.
, and
Torzilli
,
P. A.
,
1995
, “
Effect of Stress Deprivation and Cyclic Tensile Loading on the Material and Morphologic Properties of Canine Flexor Digitorum Profundus Tendons: An in Vitro Study
,”
J. Orthop. Res.
,
13
, pp.
907
914
.
17.
Kastelic
,
J.
,
Galeski
,
A.
, and
Baer
,
E.
,
1978
, “
The Multicomposite Structure of Tendon
,”
Connect. Tissue Res.
,
6,
, pp.
11
23
.
18.
Derwin
,
K. A.
, and
Soslowsky
,
L. J.
,
1999
, “
A Quantitative Investigation of Structure-Function Relationships in a Tendon Fascicle Model
,”
ASME J. Biomech. Eng.
,
121
, pp.
598
604
.
19.
Yamamoto
,
E.
,
Hayashi
,
K.
, and
Yamamoto
,
N.
,
1999
, “
Mechanical Properties of Collagen Fascicles From the Rabbit Patellar Tendon
,”
ASME J. Biomech. Eng.
,
121
, pp.
124
131
.
20.
Freshney, R. I., 1994, Culture of Animal Cells—A Manual of Basic Technique, Third Edition, Wiley-Liss, New York, NY.
21.
Yamamoto
,
N.
,
Hayashi
,
K.
,
Kuriyama
,
H.
,
Ohno
,
K.
,
Yasuda
,
K.
, and
Kaneda
,
K.
,
1992
, “
Mechanical Properties of the Rabbit Patellar Tendon
,”
ASME J. Biomech. Eng.
114
, pp.
332
337
.
22.
Yamamoto
,
N.
,
Hayashi
,
K.
, and
Hayashi
,
F.
,
1992
, “
In Vivo Measurement of Tension in the Rabbit Patellar Tendon
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
58
, pp.
1142
1147
.
23.
Keira
,
M.
,
Yasuda
,
K.
,
Kaneda
,
K.
,
Yamamoto
,
N.
, and
Hayashi
,
N.
,
1996
, “
Mechanical properties of the Anterior Cruciate Ligament Chronically Relaxed by Elevation of the Tibial Insertion
,”
J. Orthop. Res.
,
14
,
157
166
.
24.
Yamamoto
,
E.
,
Hayashi
,
K.
, and
Yamamoto
,
N.
,
1999
, “
Mechanical Properties of Collagen Fascicles from Stress-Shielded Patellar Tendons in the Rabbit
,”
Clin. Biomech.
,
14
, pp.
418
425
.
25.
Hannafin
,
J. A.
, and
Arnoczky
,
S. P.
,
1994
, “
Effect of Cyclic and Static Tensile Loading on Water Content and Solute Diffusion in Canine Flexor Tendons: An in Vitro Study
,”
J. Orthop. Res.
,
12
, pp.
350
356
.
26.
Mass
,
P. D.
,
Tuel
,
R. J.
,
Labarbera
,
M.
, and
Greenwald
,
D. P.
,
1993
, “
Effects of Constant Mechanical Tension on the Healing of Rabbit Flexor Tendons
,”
Clin. Orthop.
,
296
, pp.
301
306
.
27.
Tanaka
,
H.
,
Manske
,
P. R.
,
Pruitt
,
D. L.
, and
Larson
,
B. J.
,
1995
, “
Effects of Cyclic Tension on Lacerated Flexor Tendons in Vitro
,”
J. Hand Surg.
,
20A
, pp.
467
473
.
28.
McDonald
,
F.
, and
Ford
,
T. R. P.
,
1993
, “
Blood Flow Changes in the Tibia During External Loading
,”
J. Orthop. Res.
,
11
, pp.
36
48
.
29.
Carano
,
A.
, and
Siciliani
,
G.
,
1996
, “
Effects of Continuous and Intermittent Forces on Human Fibroblasts In Vitro
,”
Eur. J. Ortho.
,
18
, pp.
19
26
.
30.
Nabeshima
,
Y.
,
Grood
,
E. S.
,
Sakurai
,
A.
, and
Herman
,
J. H.
,
1996
, “
Uniaxial Tension Inhibits Tendon Collagen Degradation by Collagenase in Vitro
,”
J. Orthop. Res.
,
14
, pp.
123
130
.
31.
Dale
,
W. C.
,
Baer
,
E.
,
Keller
,
A.
, and
Kohn
,
R. R.
,
1972
, “
On the Ultrastructure of Mammalian Tendon
,”
Experientia
,
28
, pp.
1293
1295
.
32.
Diamant
,
J.
,
Keller
,
A.
,
Baer
,
E.
,
Litt
,
M.
, and
Arridge
,
R. G. C.
,
1972
, “
Collagen: Ultrastructure and Its Relation to Mechanical Properties as a Function of Aging
,”
Proc. R. Soc. London, Ser. A
,
180
, pp.
293
315
.
33.
Wilmink
,
J.
,
Wilson
,
A. M.
, and
Goodship
,
A. E.
,
1992
, “
Functional Significance of the Morphology and Micromechanics of Collagen Fibres in Relation to Partial Rupture of the Superficial Digital Flexor Tendon in Racehorses
,”
Res. Vet. Sci.
,
53
, pp.
354
359
.
34.
Patterson-Kane
,
J. C.
,
Parry
,
D. A.
,
Birch
,
H. L.
,
Goodship
,
A. E.
, and
Firth
,
E. C.
,
1997
, “
An Age-Related Study of Morphology and Cross-Link Composition of Collagen Fibrils in the Digital Flexor Tendons of Young Thoroughbred Horses
,”
Connect. Tissue Res.
,
36
, pp.
253
260
.
35.
Haut
,
R. C.
,
1985
, “
The Effects of a Lathyritic Diet on the Sensitivity of Tendon to Strain Rate
,”
ASME J. Biomech. Eng.
,
107
,
166
174
.
You do not currently have access to this content.