Tensile tests and biphasic finite element modeling were used to determine a set of transversely isotropic properties for the meniscus, including the hydraulic permeability coefficients and solid matrix properties. Stress-relaxation tests were conducted on planar samples of canine meniscus samples of different orientations, and the solid matrix properties were determined from equilibrium data. A 3-D linear biphasic and tranversely isotropic finite element model was developed to model the stress-relaxation behavior of the samples in tension, and optimization was used to determine the permeability coefficients, k1 and k2, governing fluid flow parallel and perpendicular to the collagen fibers, respectively. The collagen fibrillar orientation was observed to have an effect on the Young’s moduli (E1=67.8MPa,E2=11.1MPa) and Poisson’s ratios (ν12=2.13,ν21=1.50,ν23=1.02). However, a significant effect of anisotropy on permeability was not detected (k1=0.09×1016m4/Ns,k2=0.10×1016m4/Ns). The low permeability values determined in this study provide insight into the extent of fluid pressurization in the meniscus and will impact modeling predictions of load support in the meniscus.

1.
Mow, V. C., Ratcliffe, A., Chern, K. Y., and Kelly, M. A., 1992, “Structure and Function Relationships of the Menisci of the Knee,” Knee Meniscus: Basic and Clinical Foundations, V. C. Mow, S. P. Arnoczky, and D. W. Jackson, eds., Raven Press, Ltd.: New York. pp. 37–57.
2.
Arnoczky, S. P., 1992, “Gross and Vascular Anatomy of the Meniscus and its Role in Meniscal Healing, Regeneration, and Remodeling,” Knee Meniscus: Basic and Clinical Foundations, V. C. Mow, S. P. Arnoczky, and D. W. Jackson, eds., Raven Press: New York. pp. 1–14.
3.
Proctor
,
C. S.
,
Schmidt
,
M. B.
,
Whipple
,
R. R.
,
Kelly
,
M. A.
, and
Mow
,
V. C.
,
1989
, “
Material Properties of the Normal Medial Bovine Meniscus
,”
J. Orthop. Res.
,
7
, pp.
771
782
.
4.
Skaggs
,
D. L.
,
Warden
,
W. H.
, and
Mow
,
V. C.
,
1994
, “
Radial Tie Fibers Influence the Tensile Properties of the Bovine Medial Meniscus
,”
J. Orthop. Res.
,
12
, pp.
176
185
.
5.
Tissakht
,
M.
, and
Ahmed
,
A. M.
,
1995
, “
Tensile Stress-Strain Characteristics of the Human Meniscal Material
,”
J. Biomech.
,
28
, pp.
411
422
.
6.
Fithian
,
D. C.
,
Kelly
,
M. A.
, and
Mow
,
V. C.
,
1990
, “
Material Properties and Structure-Function Relationships in the Menisci
,”
Clin. Orthop. Relat. Res.
,
252
, pp.
19
31
.
7.
Mansour
,
J. M.
, and
Mow
,
V. C.
,
1976
, “
The Permeability of Articular Cartilage Under Compressive Strain and at High Pressures
,”
J. Bone Jt. Surg., Am. Vol.
,
58
, pp.
509
516
.
8.
Joshi
,
M.
,
Suh
,
J.
,
Marui
,
T.
, and
Woo
,
S.
,
1995
, “
Interspecies Variation of Compressive Biomechanical Properties of the Meniscus
,”
J. Biomed. Mater. Res.
,
29
(
7
), pp.
823
828
.
9.
Aspden
,
R. M.
,
1985
, “
A Model for the Function and Failure of the Meniscus
,”
Med. Eng. Phys.
,
14
, pp.
119
122
.
10.
Schreppers
,
G. J. M.
,
Sauren
,
A. A. H. J.
, and
Huson
,
A.
,
1990
, “
A Numerical Model of the Load Transmission in the Tibio-Femoral Contact Area
,”
Proc. Inst. Mech. Eng., IMechE Conf.
,
204
, pp.
53
59
.
11.
Spilker
,
R. L.
,
Suh
,
J. K.
, and
Mow
,
V. C.
,
1992
, “
A Finite Element Analysis of the Indentation Stress-Relaxation Response of Linear Biphasic Articular Cartilage
,”
ASME J. Biomech. Eng.
,
114
(
2
), pp.
191
201
.
12.
Tissahkt
,
M.
,
Marchand
,
F.
, and
Ahmed
,
A. M.
,
1991
, “
Non-Linear Finite Element Analysis of the Knee Menisci: A Composite Fiber-Reinforced Model
,”
Trans. Orthop. Res. Soc.
,
16
, pp.
294
294
.
13.
Gu
,
W. Y.
,
Mao
,
X. G.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
,
Mow
,
M.
, and
Rawlins
,
B. A.
,
1999
, “
The Anisotropic Hydraulic Permeability of Human Lumbar Anulus Fibrosus: Influence of Age, Degeneration, and Water Content
,”
Spine
,
24
, pp.
2449
2460
.
14.
Elliott
,
D. M.
,
Guilak
,
F.
,
Vail
,
T. P.
,
Wang
,
J. Y.
, and
Setton
,
L. A.
,
1999
, “
Tensile Properties of Articular Cartilage are Altered by Meniscectomy in a Canine Model of Osteoarthritis
,”
J. Orthop. Res.
,
17
, pp.
503
508
.
15.
Narmoneva
,
D. A.
,
Wang
,
J. Y.
, and
Setton
,
L. A.
,
1999
, “
Nonuniform Swelling-Induced Residual Strains in Articular Cartilage
,”
J. Biomech.
,
32
(
4
), pp.
401
8
.
16.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
17.
Almeida, E. S., 1995, “Finite Element Formulations for Biological Soft Hydrated Tissues Under Finite Deformation,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
18.
Wayne
,
J. S.
,
Woo
,
S. L.-Y.
, and
Kwan
,
M. K.
,
1991
, “
Application of the u-p Finite Element Method to the Study of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
, pp.
397
403
.
19.
Lai, W. M., Rubin, D., and Krempl, E., 1993, “The Elastic Solid,” Introduction to Continuum Mechanics. Pergamon Press: Oxford. pp. 217–347.
20.
Anderson
,
D. R.
,
Woo
,
S. L.-Y.
,
Kwan
,
M. D.
, and
Gershuni
,
D. H.
,
1991
, “
Viscoelastic Shear Properties of the Equine Medial Meniscus
,”
J. Orthop. Res.
,
9
, pp.
550
558
.
21.
Zhu
,
W.
,
Chern
,
K. Y.
, and
Mow
,
V. C.
,
1994
, “
Anisotropic Viscoelastic Shear Properties of Bovine Meniscus
,”
Clin. Orthop. Relat. Res.
,
306
, pp.
34
45
.
22.
Elliott
,
D. M.
, and
Setton
,
L. A.
,
2000
, “
A Linear Material Model fr Fiber-Induced Anisotropy of the Anulus Fibrosus
,”
ASME J. Biomech. Eng.
,
122
, pp.
173
9
.
23.
Holman, J. P., 1971, Experimental Methods for Engineers. 2nd Edition 1971, New York: McGraw-Hill. pp. 56–57.
24.
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1985
, “
Singular Perturbation Analysis of the Nonlinear, Flow-Dependent Compressive Stress Relaxation Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
107
, pp.
206
218
.
25.
Lai
,
W. M.
, and
Mow
,
V. C.
,
1980
, “
Drag-Induced Compression of Articular Cartilage During a Permeation Experiment
,”
Biorheology
,
17
(
1–2
), pp.
111
23
.
26.
Cohen, B., 1992, “Anisotropic Hydrated Soft Tissues in Finite Deformation and the Biomechanics of the Growth Plate,” Ph.D. thesis, Columbia University, New York, NY.
27.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1998
, “
Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression
,”
J. Biomech.
,
31
, pp.
535
544
.
28.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
122
, pp.
576
586
.
29.
Tsay
,
R. Y.
, and
Weinbaum
,
S.
,
1991
, “
Viscous Flow in a Channel With Periodic Cross-Bridging Fibers: Exact Solutions and Brinkman Approximation
,”
J. Fluid Mech.
,
226
, pp.
125
148
.
30.
Zeng
,
Y.
,
Cowin
,
S. C.
, and
Weinbaum
,
S.
,
1994
, “
A Fiber Matrix Model for Fluid Flow and Streaming Potentials in the Canaliculi of an Osteon
,”
Ann. Biomed. Eng.
,
22
, pp.
280
292
.
31.
Li, J. T., Armstrong, C. G., and Mow, V. C., 1983, “The Effect of Strain Rate on Mechanical Properties of Articular Cartilage in Tension,” ASME Biomechanics Symposium 1983: Applied Mechanics Division, 56, pp. 117–120.
32.
Goertzen
,
D. J.
,
Budney
,
D. R.
, and
Cinats
,
J. G.
,
1997
, “
Methodology and Apparatus to Determine Material Properties of the Knee Joint Meniscus
,”
Med. Eng. Phys.
,
19
, pp.
412
419
.
33.
Fithian
,
D. C.
,
Zhu
,
W. B.
,
Ratcliffe
,
A.
,
Kelly
,
M. A.
,
Mow
,
V. C.
, and
Malinin
,
T. I.
,
1989
, “
Exponential Law Representation of Tensile Properties of Human Meniscus
,”
Proc. Institute of Mechanical Engineering in Bioengineering
,
203
, pp.
85
90
.
34.
Setton
,
L. A.
,
Perry
,
C. H.
,
Elliott
,
D. M.
,
Wyland
,
D. J.
,
LeRoux
,
M. A.
,
Guilak
,
F.
, and
Vail
,
T. P.
,
1999
, “
The Anisotropic Properties of the Healing Meniscus in Tension
,”
Adv. Bioeng.
,
BED-42
, pp.
73
74
.
35.
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression
,”
J. Biomed. Eng.
,
121
, pp.
340
347
.
36.
Fortin
,
M.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Hunziker
,
E.
, and
Buschmann
,
M.
,
2000
, “
Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison with a Fibril-Reinforced Biphasic Model
,”
ASME J. Biomech. Eng.
,
122
, pp.
189
95
.
37.
Schreppers
,
G. J. M.
,
Sauren
,
A. A. H. J.
, and
Huson
,
A.
,
1991
, “
A Model of Force Transmission in the Tibio-Femoral Contact Incorporating Fluid and Mixtures
,”
Proc. Inst. Mech. Eng., IMechE Conf.
,
205
, pp.
233
241
.
38.
Spilker
,
R. L.
,
Donzelli
,
P. S.
, and
Mow
,
V. C.
,
1992
, “
A Transversely Isotropic Biphasic Finite Element Model of the Meniscus
,”
J. Biomech.
,
25
, pp.
1027
1045
.
39.
Kwan
,
M. K.
,
Wayne
,
J. S.
,
Woo
,
S. L.-Y.
,
Field
,
F. P.
,
Hoover
,
J.
, and
Meyers
,
M.
,
1989
, “
Histological and Biomechanical Assessment of Articular Cartilage from Stored Osteochondral Shell Allografts
,”
J. Orthop. Res.
,
7
, pp.
637
644
.
40.
Ateshian
,
G. A.
,
1997
, “
A Theoretical Formulation for Boundary Friction in Articular Cartilage
,”
J. Biomech. Eng.
,
119
, pp.
81
86
.
41.
Armstrong
,
C. G.
, and
Mow
,
V. C.
,
1982
, “
Variations in the Intrinsic Mechanical Properties of Human Articular Cartilage with Age, Degeneration, and Water Content
,”
J. Bone J. Surg.
,
64A
, pp.
88
94
.
42.
Drost
,
M. R.
,
Willems
,
P.
,
Snijders
,
H.
,
Huyghe
,
J. M.
,
Janssen
,
J. D.
, and
Huson
,
A.
,
1995
, “
Confined Compression of Canine Annulus Fibrosus Under Chemical and Mechanical Loading
,”
J. Biomech. Eng.
,
117
, pp.
390
396
.
43.
Best
,
B. A.
,
Guilak
,
F.
,
Setton
,
L. A.
,
Zhu
,
W.
,
Saed-Nejad
,
F.
,
Ratcliffe
,
A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1994
, “
Compressive Mechanical Properties of the Human Anulus Fibrosus and Their Relationship to Biochemical Composition
,”
Spine
,
19
, pp.
212
221
.
You do not currently have access to this content.