Abstract

Short and long duration tests were conducted on hollow femoral bone cylinders to study the circumferential (hoop) creep response of cortical bone subjected to an intramedullary radial load. It was hypothesized that there is a stress threshold above which nonlinear creep effects dominate the mechanical response and below which the response is primarily determined by linear viscoelastic material properties. The results indicate that a hoop stress threshold exists for cortical bone, where creep strain, creep strain rate and residual strain exhibited linear behavior at low hoop stress and nonlinear behavior above the hoop stress threshold. A power-law relationship was used to describe creep strain as a function of hoop stress and time and damage morphology was assessed.

1.
Ring
,
P. A.
,
1978
, “
Five to Fourteen Year Interim Results of Uncemented Total Hip Arthroplasty
,”
Clin. Orthop.
,
137
, p.
87
87
.
2.
Engh
,
C. A.
,
1983
, “
Hip Arthroplasty with a Moore Prosthesis with Porous Coating: A Five-Year Study
,”
Clin. Orthop.
,
176
, pp.
52
66
.
3.
Morscher
,
E. W.
,
1983
, “
Cementless Total Hip Arthroplasty
,”
Clin. Orthop.
,
181
, pp.
76
91
.
4.
Robertson
,
D. D.
,
Walker
,
P. S.
,
Hirano
,
S. K.
,
Zhou
,
X. M.
,
Granhholm
,
J. W.
, and
Poss
,
R.
,
1988
, “
Improving the Fit of Press-Fit Hip Stems
,”
Clin. Orthop.
,
228
, pp.
134
140
.
5.
Poss
,
R.
,
Walker
,
P.
,
Spector
,
M.
,
Reilly
,
D. T.
,
Robertson
,
D. D.
, and
Sledge
,
C. B.
,
1988
, “
Strategies for Improving Fixation of Femoral Components in Total Hip Arthroplasty
,”
Clin. Orthop.
,
235
, pp.
181
194
.
6.
Blaha, J. D., 1998, “Press-Fit Femoral Components,” The Adult Hip, ed. J. J. Callaghan, A. G. Rosenberg, and H. E. Rubash, Lippincott-Raven, Philadelphia, pp. 1085–1091.
7.
Jasty
,
M.
,
Henshaw
,
R. M.
,
O’Conner
,
D. O.
, and
Harris
,
W. H.
,
1993
, “
High Assembly Strains and Femoral Fractures Produced During Insertion of Uncemented Femoral Components
,”
J. Arthroplasty
,
8
, pp.
479
487
.
8.
Kyle
,
R.
,
1999
, “
Tips and Pearls Periprosthetic Fractures
,”
Techniques in Orthopaedics
,
14
(
2
), pp.
89
94
.
9.
Smith
,
J. W.
, and
Walmsley
,
R.
,
1959
, “
Factors Affecting the Elasticity of Bone
,”
J. Anat.
,
93
, pp.
503
523
.
10.
Currey
,
J. D.
,
1965
, “
Anelasticity in Bone and Echinoderm Skeletons
,”
J. Exp. Biol.
,
43
, pp.
279
292
.
11.
Sedlin
,
E. D.
,
1965
, “
A Rheologic Model for Cortical Bone, A Study of the Physical Properties of Human Femoral Samples
,”
Acta Orthop. Scand.
,
S83
, pp.
1
77
.
12.
Bonfield
,
W.
, and
Li
,
C. H.
,
1967
, “
Anisotropy of Non Elastic Flow in Bone
,”
J. Appl. Phys.
,
38
(
6
), pp.
2450
2455
.
13.
Utenkin
,
A. A.
, and
Sveshnikova
,
A. A.
,
1973
, “
The Effect of Prolonged Loading on the Deformation Properties of Compact Bone Matter
,”
Arkh. Anat., Gistol. Embriol.
, ,
64
, pp.
14
20
.
14.
Crowninshield
,
R. D.
, and
Pope
,
M. H.
,
1974
, “
The Response of Compact Bone in Tension at Various Strain Rates
,”
Ann. Biomed. Eng.
,
2
, pp.
217
225
.
15.
Knets
,
I. V.
, and
Vilks
,
Yu. K.
,
1975
, “
Creep of Compact Human Bony Tissue Under Tension
,”
Polymer Mechanics
,
11
, pp.
543
547
.
16.
Melnis
,
A. E.
, and
Laizan
,
Ya. B.
,
1978
, “
Nonlinear Creep of Human Compact Bone Tissue Upon Stretching
,”
Polymer Mechanics
,
14
, pp.
82
84
.
17.
Lakes
,
R. S.
,
Katz
,
J. L.
, and
Sternstein
,
S. S.
,
1979
, “
Viscoelastic Properties of Wet Cortical Bone—I. Torsional and Biaxial Studies
,”
J. Biomech.
,
12
, pp.
657
678
.
18.
Lakes
,
R. S.
, and
Katz
,
J. L.
,
1979
, “
Viscoelastic Properties of Wet Cortical Bone—II. Relaxation Mechanisms
,”
J. Biomech.
,
12
, pp.
679
687
.
19.
Lakes
,
R. S.
, and
Katz
,
J. L.
,
1979
, “
Viscoelastic Properties of Wet Cortical Bone—III. A Constitutive Equation
,”
J. Biomech.
,
12
, pp.
689
698
.
20.
Lakes
,
R.
, and
Saha
,
S.
,
1979
, “
Cement Line Motion in Bone
,”
Science
,
204
, pp.
501
503
.
21.
Melnis
,
A. E.
,
Knets
,
I. V.
, and
Moorlat
,
P. A.
,
1979
, “
Deformation Behavior of Human Compact Bone Tissue Upon Creep Under Tensile Testing
,”
Mechanics of Composite Materials
,
15
, pp.
574
579
.
22.
Lakes
,
R.
, and
Saha
,
S.
,
1980
, “
Long-Term Torsional Creep in Compact Bone
,”
J. Biomech.
,
102
, pp.
179
180
.
23.
Melnis
,
A. E.
, and
Knets
,
I. V.
,
1981
, “
Age-Related Changes in the Tensile Creep Properties of Human Compact Bone Tissue
,”
Mechanics of Composite Materials
,
17
, pp.
495
501
.
24.
Melnis
,
A. E.
,
Ozola
,
B. O.
, and
Moorlat
,
P. A.
,
1981
, “
Comparative Characteristics of the Creep Properties of Human Compact Bone Tissue Under Various Specimen Storage and Testing Conditions
,”
Mechanics of Composite Materials
,
17
, pp.
355
360
.
25.
Carter
,
D. R.
, and
Caler
,
W. E.
,
1983
, “
Cycle-Dependent and Time-Dependent Bone Fracture with Repeated Loading
,”
J. Biomech. Eng.
,
105
, pp.
166
170
.
26.
Park
,
H. C.
, and
Lakes
,
R. S.
,
1986
, “
Cosserat Micromechanics of Human Bone: Strain Redistribution by a Hydration Sensitive Constituent
,”
J. Biomech.
,
19
, pp.
385
397
.
27.
Fondrk
,
M.
,
Bahniuk
,
E.
,
Davy
,
D. T.
, and
Michaels
,
C.
,
1988
, “
Some Viscoplastic Characteristics of Bovine and Human Cortical Bone
,”
J. Biomech.
,
21
, pp.
623
630
.
28.
Caler
,
W. E.
, and
Carter
,
D. R.
,
1989
, “
Bone Creep-Fatigue Damage Accumulation
,”
J. Biomech.
,
22
,
625
635
.
29.
Fondrk, M., Bahniuk, E. H., and Davy, D. T., 1990, “Transient Creep Behavior of Cortical Bone,” Transactions of the 36th Annual Meeting, Orthopedic Research Society, Feb. 5–8, New Orleans, LA, p. 49.
30.
Mauch
,
M.
,
Currey
,
J. D.
, and
Sedman
,
A. J.
,
1992
, “
Creep Fracture in Bones with Different Stiffnesses
,”
J. Biomech.
,
25
, pp.
11
16
.
31.
Rimnac
,
C. M.
,
Petko
,
A. A.
,
Santner
,
T. J.
, and
Wright
,
T. M.
,
1993
, “
The Effect of Temperature, Stress and Microstructure on the Creep of Compact Bovine Bone
,”
J. Biomech.
,
26
, pp.
219
228
.
32.
Tanabe
,
Y.
, and
Kobayashi
,
K.
,
1994
, “
Anisotropy in the Dynamic Non-Linear Viscoelastic Properties of Bovine Compact Bone
,”
J. Mater. Sci.: Mater. Med.
,
5
, pp.
397
401
.
33.
Pattin, C. A., Jepsen, K. J., Bensusan, J. S., and Davy, D. T., 1995, “Creep Behavior of Compact Bone in Tensile and Compressive Loading Modes,” BED ASME, 29, pp. 247–248.
34.
Jepsen, K. A., Pattin, C. A., Bensusan, J. S., and Davy, D. T., 1995, “Viscoelastic Behavior and Damage Accumulation for Bovine Cortical Bone in Torsion,” BED ASME, 29, pp. 249–250.
35.
Bowman
,
S. M.
,
Gibson
,
L. J.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
,
1999
, “
Results from Demineralized Bone Creep Tests Suggest that Collagen Is Responsible for the Creep Behavior of Bone
,”
J. Biomech. Eng.
,
121
, pp.
253
258
.
36.
Brown
,
C. U.
,
Kish
,
V. L.
, and
Norman
,
T. L.
,
1998
, “
Circumferential Strain Around Femoral Cylinders Due to Simulated Press-Fit Loading
,”
Adv. Bioeng.
,
39
, pp.
409
410
.
37.
Brown
,
C. U.
,
Kish
III,
V. L.
,
Vanscoy
II,
W. M.
,
Norman
,
T. L.
, and
Blaha
,
J. D.
,
2000
, “
Device for Applying Internal Pressure to Cylindrical Specimens
,”
Exp. Tech.
,
24
(
4
), pp.
19
21
.
38.
Nicolella, D. P., Nicholls, A. E., and Lankford, J., 1998, “Micromechanics of Creep in Cortical Bone,” Transactions of the 44th Annual Meeting, Orthopedic Research Society, New Orleans, LA, March 16–19, p. 137.
39.
Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, McGraw-Hill, New York.
40.
Burr
,
D. B.
, and
Hooser
,
M.
,
1995
, “
Alterations to the En Bloc Basic Fuchsin Staining Protocol for the Demonstration of Microdamage Produced In Vivo
,”
Bone (N.Y.)
,
17
, pp.
431
433
.
41.
Myers, R. H., 1990, Classical and Modern Regression with Applications, 2nd edition, Duxbury Advance Series in Statistics, Boston.
42.
Reilly
,
D. T.
, and
Burstein
,
A. H.
,
1975
, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
,
8
, pp.
393
405
.
43.
Knets, I. V., and Malmeisters, A., 1977, “Deformability and Strength of Human Compact Bone Tissue,” Mechanics of Biological Solids: Proc. Euromech Colloquium 68, Brankov, G., ed., Bulgarian Academy of Sciences, Sofia, p. 133.
44.
Ashman
,
R. B.
,
Cowin
,
S. C.
,
Van Buskirk
,
W. C.
, and
Rice
,
J. C.
,
1984
, “
A Continuous Wave Technique for the Measurement of the Elastic Properties of Cortical Bone
,”
J. Biomech.
,
17
, pp.
349
361
.
45.
Piekarski
,
K.
,
1970
, “
Fracture of Bone
,”
J. Appl. Phys.
,
41
, pp.
215
233
.
46.
Conrondan
,
G.
, and
Haworth
,
W. L.
,
1986
, “
A Fractographic Study of Human Long Bone
,”
J. Biomech.
,
19
, pp.
207
218
.
47.
Yeni
,
Y. N.
, and
Norman
,
T. L.
,
2000
, “
Calculation of Porosity and Osteonal Cement Line Effects on the Effective Fracture Toughness of Cortical Bone in Longitudinal Crack Growth
,”
J. Biomed. Mater. Res.
,
51
(
3
), pp.
504
509
.
48.
Schaffler
,
M. B.
,
Choi
,
K.
, and
Milgrom
,
C.
,
1995
, “
Aging and Matrix Microdamage Accumulation in Human Compact Bone
,”
Bone (N.Y.)
,
17
, pp.
521
525
.
49.
Norman
,
T. L.
, and
Wang
,
Z.
,
1997
, “
Microdamage of Human Cortical Bone: Incidence and Morphology in Long Bones
,”
Bone (N.Y.)
,
20
, pp.
375
379
.
50.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1977
, “
Compact Bone Fatigue Damage—I. Residual Strength and Stiffness
,”
J. Biomech.
,
10
,
325
337
.
51.
Schaffler
,
M. B.
,
Burr
,
D. B.
, and
Radin
,
E. L.
,
1989
, “
Mechanical and Morphological Effects of Strain Rate on Fatigue in Compact Bone
,”
Bone (N.Y.)
,
10
, pp.
207
214
.
52.
Schaffler
,
M. B.
,
Radin
,
E. L.
, and
Burr
,
D. B.
,
1990
, “
Long-Term Fatigue Behavior of Compact Bone at Low Strain Magnitude and Rate
,”
Bone (N.Y.)
,
11
, pp.
321
326
.
53.
Frost, H. M., 1973, Bone Modeling and Skeletal Modeling Errors, Charles C. Thomas Publisher, Springfield, IL, p. 80.
You do not currently have access to this content.