Multiaxial failure properties of trabecular bone are important for modeling of whole bone fracture and can provide insight into structure-function relationships. There is currently no consensus on the most appropriate form of multiaxial yield criterion for trabecular bone. Using experimentally validated, high-resolution, non-linear finite element models, biaxial plain strain boundary conditions were applied to seven bovine tibial specimens. The dependence of multiaxial yield properties on volume fraction was investigated to quantify the interspecimen heterogeneity in yield stresses and strains. Two specimens were further analyzed to determine the yield properties for a wide range of biaxial strain loading conditions. The locations and quantities of tissue level yielding were compared for on-axis, transverse, and biaxial apparent level yielding to elucidate the micromechanical failure mechanisms. As reported for uniaxial loading of trabecular bone, the yield strains in multiaxial loading did not depend on volume fraction, whereas the yield stresses did. Micromechanical analysis indicated that the failure mechanisms in the on-axis and transverse loading directions were mostly independent. Consistent with this, the biaxial yield properties were best described by independent curves for on-axis and transverse loading. These findings establish that the multiaxial failure of trabecular bone is predominantly governed by the strain along the loading direction, requiring separate analytical expressions for each orthotropic axis to capture the apparent level yield behavior.

1.
Lotz
,
J. C.
,
Cheal
,
E. J.
, and
Hayes
,
W. C.
,
1991
, “
Fracture Prediction for the Proximal Femur Using Finite Element Models: Part II—Nonlinear Analysis
,”
J. Biomech. Eng.
,
113
(
4
), pp.
361
65
.
2.
Lotz
,
J. C.
,
Cheal
,
E. J.
, and
Hayes
,
W. C.
,
1991
, “
Fracture Prediction for the Proximal Femur Using Finite Element Models: Part I-Linear Analysis
,”
J. Biomech. Eng.
,
113
(
4
), pp.
353
60
.
3.
Cheal
,
E. J.
,
Hayes
,
W. C.
,
Lee
,
C. H.
,
Snyder
,
B. D.
, and
Miller
,
J.
,
1985
, “
Stress Analysis of a Condylar Knee Tibial Component: Influence of Metaphyseal Shell Properties and Cement Injection Depth
,”
J. Orthop. Res.
,
3
(
4
), pp.
424
34
.
4.
Keyak
,
J. H.
, and
Rossi
,
S. A.
,
2000
, “
Prediction of Femoral Fracture Load Using Finite Element Models: An Examination of Stress- and Strain-Based Failure Theories
,”
J. Biomech.
,
33
(
2
), pp.
209
14
.
5.
Keyak
,
J. H.
,
2001
, “
Improved Prediction of Proximal Femoral Fracture Load Using Nonlinear Finite Element Models
,”
Med. Eng. Phys.
,
23
, pp.
165
73
.
6.
Fenech
,
C.
, and
Keaveny
,
T. M.
,
1999
, “
A Cellular Solid Criterion for Predicting the Axial-Shear Failure Properties of Trabecular Bone.
,”
J. Biomech. Eng.
,
121
, pp.
414
22
.
7.
Keaveny
,
T. M.
,
Wachtel
,
E. F.
,
Zadesky
,
S. P.
, and
Arramon
,
Y. P.
,
1999
, “
Application of the Tsai-Wu Quadratic Multiaxial Failure Criterion to Bovine Trabecular Bone
,”
J. Biomech. Eng.
,
121
, pp.
99
107
.
8.
Gibson, L. J., and Ashby, M. F., 1988, Cellular Solids: Structures & Properties, Oxford, Pergamon Press.
9.
Gibson
,
L. J.
,
Ashby
,
M. F.
,
Zhang
,
J.
, and
Triantafillou
,
T. C.
,
1989
, “
Failure Surfaces for Cellular Materials under Multiaxial Loads-I. Modelling
,”
Int. J. Mech. Sci.
,
31
(
9
), pp.
635
63
.
10.
Gibson
,
L. J.
,
1985
, “
The Mechanical Behavior of Cancellous Bone
,”
J. Biomech.
,
18
(
5
), pp.
317
28
.
11.
Cowin
,
S. C.
,
1986
, “
Fabric Dependence of an Anisotropic Strength Criterion
,”
Mech. Mater.
,
5
, pp.
251
60
.
12.
Brown
,
T. D.
, and
Ferguson
,
A. B.
,
1980
, “
Mechanical Property Distributions in the Cancellous Bone of the Human Proximal Femur
,”
Acta Orthop. Scand.
,
51
(
3
), pp.
429
37
.
13.
Keaveny
,
T. M.
,
Wachtel
,
E. F.
,
Ford
,
C. M.
, and
Hayes
,
W. C.
,
1994
, “
Differences between the Tensile and Compressive Strengths of Bovine Tibial Trabecular Bone Depend on Modulus
,”
J. Biomech.
,
27
, pp.
1137
46
.
14.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2001
, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
,
34
(
5
), pp.
569
77
.
15.
Ford
,
C. M.
, and
Keaveny
,
T. M.
,
1996
, “
The Dependence of Shear Failure Properties of Bovine Tibial Trabecular Bone on Apparent Density and Trabecular Orientation
,”
J. Biomech.
,
29
, pp.
1309
17
.
16.
Stone
,
J. L.
,
Beaupre
,
G. S.
, and
Hayes
,
W. C.
,
1983
, “
Multiaxial Strength Characteristics of Trabecular Bone
,”
J. Biomech.
,
16
(
9
), pp.
743
52
.
17.
Niebur
,
G. L.
,
Feldstein
,
M. J.
,
Yuen
,
J. C.
,
Chen
,
T. J.
, and
Keaveny
,
T. M.
,
2000
, “
High Resolution Finite Element Models with Tissue Strength Asymmetry Accurately Predict Failure of Trabecular Bone
,”
J. Biomech.
,
33
(
12
), pp.
1575
83
.
18.
Keaveny
,
T. M.
,
Pinilla
,
T. P.
,
Crawford
,
R. P.
,
Kopperdahl
,
D. L.
, and
Lou
,
A.
,
1997
, “
Systematic and Random Errors in Compression Testing of Trabecular Bone
,”
J. Orthop. Res.
,
15
, pp.
101
10
.
19.
Turner
,
C. H.
,
Cowin
,
S. C.
,
Rho
,
J. Y.
,
Ashman
,
R. B.
, and
Rice
,
J. C.
,
1990
, “
The Fabric Dependence of the Orthotropic Elastic Constants of Cancellous Bone
,”
J. Biomech.
,
23
(
6
), pp.
549
61
.
20.
Van Rietbergen
,
B.
,
Odgaard
,
A.
,
Kabel
,
J.
, and
Huiskes
,
R.
,
1998
, “
Relationships between Bone Morphology and Bone Elastic Properties Can be Accurately Quantified Using High-Resolution Computer Reconstructions
,”
J. Orthop. Res.
,
16
(
1
), pp.
23
28
.
21.
Niebur
,
G. L.
,
Yuen
,
J. C.
,
Hsia
,
A. C.
, and
Keaveny
,
T. M.
,
1999
, “
Convergence Behavior of High-Resolution Finite Element Models of Trabecular Bone
,”
J. Biomech.
,
121
(
6
), pp.
629
35
.
22.
Guldberg
,
R. E.
,
Hollister
,
S. J.
, and
Charras
,
G. T.
,
1998
, “
The Accuracy of Digital Image-Based Finite Element Models
,”
J. Biomech.
,
120
(
4
), pp.
289
95
.
23.
Van Rietbergen
,
B.
,
Weinans
,
H.
,
Huiskes
,
R.
, and
Odgaard
,
A.
,
1995
, “
A New Method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite Element Models
,”
J. Biomech.
,
28
(
1
), pp.
69
81
.
24.
Rohl
,
L.
,
Larsen
,
E.
,
Linde
,
F.
,
Odgaard
,
A.
, and
Jorgensen
,
J.
,
1991
, “
Tensile and Compressive Properties of Cancellous Bone
,”
J. Biomech.
,
24
(
12
), pp.
1143
49
.
25.
Kopperdahl
,
D. L.
, and
Keaveny
,
T. M.
,
1998
, “
Yield Strain Behavior of Trabecular Bone
,”
J. Biomech.
,
31
(
7
), pp.
601
08
.
26.
Keller
,
T. S.
,
1994
, “
Predicting the Compressive Mechanical Behavior of Bone
,”
J. Biomech.
,
27
(
9
), pp.
1159
68
.
27.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1977
, “
The Compressive Behavior of Bone as a Two-Phase Porous Structure
,”
J. Bone Jt. Surg.
,
59-A
, pp.
954
62
.
28.
Rice
,
J. C.
,
Cowin
,
S. C.
, and
Bowman
,
J. A.
,
1988
, “
On the Dependence of the Elasticity and Strength of Cancellous Bone on Apparent Density
,”
J. Biomech.
,
21
(
2
), pp.
155
68
.
29.
Cowin
,
S. C.
,
1985
, “
The Relationship between the Elasticity Tensor and the Fabric Tensor
,”
Mech. Mater.
,
4
, pp.
137
47
.
30.
Turner
,
C. H.
, and
Cowin
,
S. C.
,
1987
, “
Dependence of Elastic Constants of an Anisotropic Porous Material Upon Porosity and Fabric
,”
Mech. Mater.
,
22
(
9
), pp.
3178
84
.
31.
Turner
,
C. H.
, and
Cowin
,
S. C.
,
1988
, “
Errors Introduced by Off-Axis Measurements of the Elastic Properties of Bone
,”
J. Biomech.
,
110
, pp.
213
14
.
32.
Odgaard
,
A.
,
Kabel
,
J.
,
Van Rietbergen
,
B.
,
Dalstra
,
M.
, and
Huiskes
,
R.
,
1997
, “
Fabric and Elastic Principal Directions of Cancellous Bone Are Closely Related
,”
J. Biomech.
,
30
(
5
), pp.
487
95
.
33.
Wolff, J., 1892, Das Gesetz Der Transformation Der Knochen., Berlin: Hirschwald.
34.
Wolff, J., 1986, The Law of Bone Remodelling. Berlin; New York: Springer-Verlag. xii. 126.
35.
Fyhrie
,
D. P.
, and
Vashishth
,
D.
,
2000
, “
Bone Stiffness Predicts Strength Similarly for Human Vertebral Cancellous Bone in Compression and for Cortical Bone in Tension
,”
Bone (N.Y.)
,
26
(
2
), pp.
169
73
.
36.
Vahey
,
J. W.
,
Lewis
,
J. L.
, and
Vanderby
,
R. J.
,
1987
, “
Elastic Moduli, Yield Stress, and Ultimate Stress of Cancellous Bone in the Canine Proximal Femur
,”
J. Biomech.
,
20
(
1
), pp.
29
33
.
37.
Oden
,
Z. M.
,
Selvitelli
,
D.
, and
Bouxsein
,
M.
,
1999
, “
Effect of Local Density Increases on the Failure Load of the Proximal Femur
,”
J. Orthop. Res.
,
17
(
5
), pp.
661
67
.
38.
Chang
,
W. C. W.
,
Christensen
,
T. M.
,
Pinilla
,
T. P.
, and
Keaveny
,
T. M.
,
1999
, “
Isotropy of Uniaxial Yield Strains for Bovine Trabecular Bone
,”
J. Orthop. Res.
,
17
, pp.
582
85
.
39.
Turner
,
C. H.
,
1989
, “
Yield Behavior of Bovine Cancellous Bone
,”
J. Biomech.
,
111
(
3
), pp.
256
60
.
40.
Triantafillou
,
T. C.
,
Zhang
,
J.
,
Shercliff
,
T. L.
,
Gibson
,
L. J.
, and
Ashby,
M. F.
,
1989
, “
Failure Surfaces for Cellular Materials under Multiaxial Loads-II. Comparison of Models with Experiment
,”
Int. J. Mech. Sci.
,
31
(
9
), pp.
665
78
.
41.
Triantafillou
,
T. C.
, and
Gibson
,
L. J.
,
1990
, “
Multiaxial Failure Criteria for Brittle Foams
,”
Int. J. Mech. Sci.
,
32
(
6
), pp.
479
96
.
42.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1982
, “
The Mechanics of Three-Dimensional Cellular Materials
,”
Proceedings of the Royal Society (London)
,
382, pp.
43
59
.
43.
Benaissa
,
R.
,
Uhthoff
,
H. K.
, and
Mercier
,
P.
,
1989
, “
Repair of Trabecular Fatigue Fractures. Cadaver Studies of the Upper Femur
,”
Acta Orthop. Scand.
,
60
(
5
), pp.
585
89
.
44.
Van Rietbergen
,
B.
,
Odgaard
,
A.
,
Kabel
,
J.
, and
Huiskes
,
R.
,
1996
, “
Direct Mechanics Assessment of Elastic Symmetries and Properties of Trabecular Bone Architecture
,”
J. Biomech.
,
29
(
12
), pp.
1653
57
.
45.
Arramon, Y. P., Yeh, O. C., Morgan, E. F., and Keaveny, T. M., 1999, “Axial-Shear Failure Behavior of Human Femoral Trabecular Bone,” International Mechanical Engineering Conference and Exposition, Vol. BED-43. Nashville TN: ASME.
You do not currently have access to this content.