In both cortical and trabecular bone loaded in fatigue, the stress-strain loops translate along the strain axis. Previous studies have suggested that this translation is the result of creep associated with the mean stress applied in the fatigue test. In this study, we measured the residual strain (corresponding to the translation of the stress-strain loops) in fatigue tests on bovine trabecular bone and compared it to an upper bound estimate of the creep strain in each test. Our results indicate that the contribution of creep to the translation of the stress-strain loops is negligible in bovine trabecular bone. These results, combined with models for fatigue in lower density bone, suggest that that creep does not contribute to the fatigue of normal human bone. Creep may make a significant contribution to fatigue in low-density osteoporotic bone in which trabeculae have resorbed, reducing the connectivity of the trabecular structure.

1.
Burr
,
D. B.
,
Forwood
,
M. R.
,
Fyhrie
,
D. P.
,
Martin
,
R. B.
,
Schaffler
,
M. B.
, and
Turner
,
C. H.
,
1997
, “
Bone microdamage and skeletal fragility in osteoporotic and stress fractures
,”
J. Bone Miner. Res.
,
12
(
1
), pp.
6
15
.
2.
Muir
,
P.
,
Johnson
,
K. A.
, and
Ruaux-Mason
,
C. P.
,
1999
, “
In vivo matrix microdamage in a naturally occurring canine fatigue fracture
,”
Bone (N.Y.)
,
25
(
5
), pp.
571
576
.
3.
Schaffler
,
M. B.
,
Choi
,
K.
, and
Milgrom
,
C.
,
1995
, “
Aging and matrix microdamage accumulation in human compact bone
,”
Bone (N.Y.)
,
17
(
6
), pp.
521
525
.
4.
Moore
,
T. L. A.
, and
Gibson
,
L. J.
,
2003
, “
Fatigue of bovine trabecular bone
,”
J. Biomech. Eng.
,
125
, pp.
761
768
5.
Moore
,
T. L. A.
, and
Gibson
,
L. J.
,
2003
, “
Fatigue microdamage of bovine trabecular bone
,”
J. Biomech. Eng.
,
125
, pp.
769
776
.
6.
Freeman
,
M. A. R.
,
Todd
,
R. C.
, and
Ririe
,
C. J.
,
1974
, “
The role of fatigue in the pathogenesis of senile femoral neck fractures
,”
J. Bone Jt. Surg.
,
56-B
(
4
), pp.
698
702
.
7.
Daffner
,
R. H.
, and
Pavlov
,
H.
,
1992
, “
Stress fractures: current concepts
,”
Am. J. Roentgenol.
,
159
(
8
), pp.
245
252
.
8.
Egol
,
K. A.
,
Koval
,
K. J.
,
Kummer
,
F.
, and
Frankel
,
V. H.
,
1998
, “
Stress fractures of the femoral neck
,”
Clin. Orthop. Relat. Res.
,
348
, pp.
72
78
.
9.
Melton
,
L. J. I.
,
Kan
,
S. H.
,
Fyre
,
M. A.
,
Wahner
,
H. W.
,
O’Fallon
,
W. M.
, and
Riggs
,
B. L.
,
1989
, “
Epidemiology of vertebral fractures in women
,”
Amer. J. Epidemiol.
,
129
(
5
), pp.
1000
1011
.
10.
Mosekilde
,
L.
,
1993
, “
Vertebral structure and strength in vivo and in vitro
,”
Calcified Tissue International
,
53
(Suppl 1), pp.
S121–S126
S121–S126
.
11.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1976
, “
Fatigue life of compact bone-I. Effects of stress amplitude, temperature and density
,”
J. Biomech.
,
9
, pp.
27
34
.
12.
Carter
,
D. R.
,
Hayes
,
W. C.
, and
Schurman
,
D. J.
,
1976
, “
Fatigue life of compact bone-II. Effects of microstructure and density
,”
J. Biomech.
,
9
, pp.
211
218
.
13.
Carter
,
D. R.
, and
Caler
,
W. E.
,
1983
, “
Cycle-dependent and time-dependent bone fracture with repeated loading
,”
J. Biomech. Eng.
,
105
(
2
), pp.
166
170
.
14.
Caler
,
W. E.
, and
Carter
,
D. R.
,
1989
, “
Bone creep-fatigue damage accumulation
,”
J. Biomech.
,
22
(
6-7
), pp.
625
635
.
15.
Taylor
,
D.
,
O’Brien
,
F.
,
Prina-Mello
,
A.
,
Ryan
,
C.
,
O’Reilly
,
P.
, and
Lee
,
T. C.
,
1999
, “
Compression data on bovine bone confirms that a “stressed volume” principle explains the variability of fatigue strength results
,”
J. Biomech.
,
32
(
11
), pp.
1199
1203
.
16.
Zioupos
,
P.
,
Wang
,
X. T.
, and
Currey
,
J. D.
,
1996
, “
Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler
,”
J. Biomech.
,
29
(
8
), pp.
989
1002
.
17.
Zioupos
,
P.
,
2001
, “
Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone
,”
J. Microsc.
,
201
, pp.
270
278
.
18.
Zioupos
,
P.
,
Currey
,
J. D.
, and
Casinos
,
A.
,
2001
, “
Tensile fatigue in bone: are cycles-or time to failure, or both, important?
,”
J. Theor. Biol.
,
210
, pp.
389
399
.
19.
Pattin
,
C. A.
,
Caler
,
W. E.
, and
Carter
,
D. R.
,
1996
, “
Cyclic mechanical property degradation during fatigue loading of cortical bone
,”
J. Biomech.
,
29
(
1
), pp.
69
79
.
20.
Carter
,
D. R.
, and
Caler
,
W. E.
,
1985
, “
A cumulative damage model for bone fracture
,”
J. Orthop. Res.
,
3
(
1
), pp.
84
90
.
21.
Taylor
,
D.
, and
Prendergast
,
P. J.
,
1997
, “
A model for fatigue crack propagation and remodelling in compact bone
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
211
(
5
), pp.
369
375
.
22.
Taylor
,
D.
,
1997
, “
Bone maintenance and remodeling: a control system based on fatigue damage
,”
J. Orthop. Res.
,
15
, pp.
601
606
.
23.
Fondrk
,
M.
,
Bahniuk
,
E.
,
Davy
,
D. T.
, and
Michaels
,
C.
,
1988
, “
Some viscoplastic characteristics of bovine and human cortical bone
,”
J. Biomech.
,
21
(
8
), pp.
623
630
.
24.
Rimnac
,
C. M.
,
Petko
,
A. A.
,
Santner
,
T. J.
, and
Wright
,
T. M.
,
1993
, “
The effect of temperature, stress and microstructure on the creep of compact bovine bone
,”
J. Biomech.
,
26
(
3
), pp.
219
228
.
25.
Mauch
,
M.
,
Currey
,
J. D.
, and
Sedman
,
A. J.
,
1992
, “
Creep fracture in bones with different stiffnesses
,”
J. Biomech.
,
25
, pp.
11
16
.
26.
Bowman
,
S. M.
,
Guo
,
X. E.
,
Cheng
,
D. W.
,
Keaveny
,
T. M.
,
Gibson
,
L. J.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
,
1998
, “
Creep contributes to the fatigue behavior of bovine trabecular bone
,”
J. Biomech. Eng.
,
120
(
5
), pp.
647
654
.
27.
Keaveny
,
T. M.
,
Guo
,
X. E.
,
Wachtel
,
E. F.
,
McMahon
,
T. A.
, and
Hayes
,
W. C.
,
1994
, “
Trabecular bone exhibits fully linear elastic behavior and yields at low strains
,”
J. Biomech.
,
27
(
9
), pp.
1127
1136
.
28.
Guo, X. E., 1993, “Fatigue of Trabecular Bone,” Ph.D. Thesis, Harvard University, Cambridge, Massachusetts.
29.
Cheng, D. W., 1995, “Compressive High Cycle at Low Strain Fatigue Behavior of Bovine Trabecular Bone,” SM Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.
30.
Fyhrie
,
D. P.
, and
Schaffler
,
M. B.
,
1994
, “
Failure mechanisms in human vertebral cancellous bone
,”
Bone (N.Y.)
,
15
(
1
), pp.
105
109
.
31.
Arthur
,
T. L.
,
Pierce
,
R. K.
, and
Gibson
,
L. J.
,
2000
, “
Microdamage in creep and monotonic compression of bovine trabecular bone
,”
Transactions of the Orthopaedic Research Society
,
25
, pp.
736
736
.
32.
Taylor
,
M.
,
Verdonschot
,
N.
,
Huiskes
,
R.
, and
Zioupos
,
P.
,
1999
, “
A combined finite element method and continuum damage mechanics approach to simulate the in vitro fatigue behavior of human cortical bone
,”
J. Mater. Sci.: Mater. Med.
,
10
, pp.
841
846
.
33.
Moore
,
T. L. A.
, and
Gibson
,
L. J.
,
2002
, “
Microdamage accumulation in bovine trabecular bone in uniaxial compression
,”
J. Biomech. Eng.
,
124
(
1
), pp.
63
71
.
34.
Fazzalari
,
N. L.
,
Forwood
,
M. R.
,
Manthey
,
B. A.
,
Smith
,
K.
, and
Kolesik
,
P.
,
1998
, “
Three-dimensional confocal images of microdamage in cancellous bone
,”
Bone (N.Y.)
,
23
(
4
), pp.
373
378
.
35.
Linde
,
F.
,
Hvid
,
I.
, and
Madsen
,
F.
,
1992
, “
The effect of specimen geometry on the mechanical behavior of trabecular bone specimens
,”
J. Biomech.
,
25
(
4
), pp.
359
368
.
36.
Zhu
,
M.
,
Keller
,
T. S.
, and
Spengler
,
D. M.
,
1994
, “
Effects of specimen load-bearing and free surface layers on the compressive mechanical properties of cellular materials
,”
J. Biomech.
,
27
(
1
), pp.
57
66
.
37.
van Rietbergen
,
B.
,
Muller
,
R.
,
Ulrich
,
D.
,
Ruegsegger
,
P.
, and
Huiskes
,
R.
,
1999
, “
Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions
,”
J. Biomech.
,
32
, pp.
443
451
.
38.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2001
, “
Dependence of yield strain of human trabecular bone on anatomic site
,”
J. Biomech.
,
34
, pp.
569
577
.
39.
Gibson, L. J. and Ashby, M. F., 1997, Cellular Solids, Cambridge University Press, Cambridge.
40.
Makiyama
,
A. M.
,
Vajjala
,
S.
, and
Gibson
,
L. J.
,
2002
, “
Analysis of crack growth in a 3D Voronoi structure: A model for fatigue in low density trabecular bone
,”
J. Biomech. Eng.
,
124
, pp.
512
520
.
41.
Hertzberg, R. W., 1989, Deformation and fracture mechanics of engineering materials, Wiley, New York.
42.
Vajjhala
,
S.
,
Kraynik
,
A. M.
, and
Gibson
,
L. J.
,
2000
, “
A cellular solid model for modulus reduction due to resorption of trabeculae in bone
,”
J. Biomech. Eng.
,
22
, pp.
511
515
.
43.
Huang
,
J.-S.
, and
Gibson
,
L. J.
,
2002
, “
Creep of aluminum Voronoi foams
,”
Mater. Sci. Eng., A
,
A339
, pp.
220
226
.
You do not currently have access to this content.