In this study, we investigate the steady propagation of a liquid plug within a two-dimensional channel lined by a uniform, thin liquid film. The Navier-Stokes equations with free-surface boundary conditions are solved using the finite volume numerical scheme. We examine the effect of varying plug propagation speed and plug length in both the Stokes flow limit and for finite Reynolds number (Re). For a fixed plug length, the trailing film thickness increases with plug propagation speed. If the plug length is greater than the channel width, the trailing film thickness agrees with previous theories for semi-infinite bubble propagation. As the plug length decreases below the channel width, the trailing film thickness decreases, and for finite Re there is significant interaction between the leading and trailing menisci and their local flow effects. A recirculation flow forms inside the plug core and is skewed towards the rear meniscus as Re increases. The recirculation velocity between both tips decreases with the plug length. The macroscopic pressure gradient, which is the pressure drop between the leading and trailing gas phases divided by the plug length, is a function of U and U2, where U is the plug propagation speed, when the fluid property and the channel geometry are fixed. The U2 term becomes dominant at small values of the plug length. A capillary wave develops at the front meniscus, with an amplitude that increases with Re, and this causes large local changes in wall shear stresses and pressures.

1.
Long
,
W.
et al.
,
1991
, “
Effects of two Rescue Doses of a Synthetic Surfactant on Mortality Rate and Survival Without Bronchopulmonary Dysplasia in 700- to 1350-Gram Infants With Respiratory Distress Syndrome. The American Exosurf Neonatal Study Group I
,”
J. Pediatr. (Rio J)
,
118
(4), (Pt 1), pp.
595
605
.
2.
Hirschl
,
R. B.
et al.
,
1995
, “
Improvement of gas Exchange, Pulmonary Function, and Lung Injury With Partial Liquid Ventilation. A Study Model in a Setting of Severe Respiratory Failure
,”
Chest
,
108
(
2
), pp.
500
508
.
3.
Shaffer
,
T. H.
, and
Wolfson
,
M. R.
,
1996
, “
Liquid Ventilation: An Alternative Ventilation Strategy for Management of Neonatal Respiratory Distress
,”
Eur. J. Pediatr.
,
155
, Suppl 2, pp.
30
34
.
4.
Baden
,
H. P.
et al.
,
1997
, “
High-Frequency Oscillatory Ventilation With Partial Liquid Ventilation in a Model of Acute Respiratory Failure
,”
Crit. Care Med.
,
25
(
2
), pp.
299
302
.
5.
Leach
,
C. L.
et al.
,
1996
, “
Partial Liquid Ventilation With Perflubron in Premature Infants With Severe Respiratory Distress Syndrome. The LiquiVent Study Group
,”
N. Engl. J. Med.
,
335
(
11
), pp.
761
767
.
6.
Weiss
,
D. J.
,
Bonneau
,
L.
, and
Liggitt
,
D.
,
2001
, “
Use of Perfluorochemical Liquid Allows Earlier Detection of Gene Expression and use of Less Vector in Normal Lung and Enhances Gene Expression in Acutely Injured Lung
,”
Molecular Therapy
,
3
(
5
), pp.
734
745
.
7.
Nakazawa
,
K.
et al.
,
2001
, “
Pulmonary Administration of Prostacyclin (PGI(2)) During Partial Liquid Ventilation in an Oleic Acid-Induced Lung Injury: Inhalation of Aerosol or Intratracheal Instillation?
Intensive Care Medicine
,
27
(
1
), pp.
243
250
.
8.
Dickson
,
E. W.
et al.
,
2002
, “
Liquid Ventilation With Perflubron in the Treatment of Rats With Pneumococcal Pneumonia
,”
Crit. Care Med.
,
30
(
2
), pp.
393
395
.
9.
Yu
,
J.
, and
Chien
,
Y. W.
,
1997
, “
Pulmonary Drug Delivery: Physiologic and Mechanistic Aspects
,”
Crit. Rev. Ther. Drug Carrier Syst.
,
14
(
4
), pp.
395
453
.
10.
Raczka
,
E.
et al.
,
1998
, “
The Effect of Synthetic Surfactant Exosurf on Gene Transfer in Mouse Lung in Vivo
,”
Gene Ther.
,
5
(
10
), pp.
1333
1339
.
11.
Jobe
,
A.
et al.
,
1996
, “
Surfactant Enhances Adenovirus-Mediated Gene Expression in Rabbit Lungs
,”
Gene Ther.
,
3
(
9
), pp.
775
779
.
12.
Jensen
,
O. E.
,
Halpern
,
D.
, and
Grotberg
,
J. B.
,
1994
, “
Transport of a Passive Solute by Surfactant-Driven Flows
,”
Chem. Eng. Sci.
,
49
(
8
), pp.
1107
1117
.
13.
Zhang
,
Y. L.
,
Matar
,
O. K.
, and
Craster
,
R. V.
,
2003
, “
A Theoretical Study of Chemical Delivery Within the Lung Using Exogenous Surfactant
,”
Med. Eng. Phys.
,
25
(
2
), pp.
115
132
.
14.
Cassidy
,
K. J.
et al.
,
2001
, “
A rat Lung Model of Instilled Liquid Transport in the Pulmonary Airways
,”
J. Appl. Phys.
,
90
, pp.
1955
1967
.
15.
Hughes
,
J. M. B.
,
Rosenzweig
,
D. Y.
, and
Kivitz
,
P. B.
,
1970
, “
Site of Airway Closure in Excised Dog Lungs: Histologic Demonstration
,”
J. Appl. Phys.
,
29
, pp.
340
344
.
16.
Macklem
,
P. T.
,
Proctor
,
D. F.
, and
Hogg
,
J. C.
,
1970
, “
The Stability of Peripheral Airways
,”
Respir. Physiol.
,
8
, pp.
191
203
.
17.
Kamm
,
R. D.
, and
Schroter
,
R. C.
,
1989
, “
Is Airway Closure Caused by a Thin Liquid Instability?
Respir. Physiol.
,
75
, pp.
141
156
.
18.
Halpern
,
D.
, and
Grotberg
,
J. B.
,
1992
, “
Fluid-Elastic Instabilities of Liquid-Lined Flexible Tubes
,”
J. Fluid Mech.
,
244
, pp.
615
632
.
19.
Bilek
,
A. M.
,
Dee
,
K. C.
, and
Gaver
,
D. P.
,
2003
, “
Mechanisms of Surface-Tension-Induced Epithelial Cell Damage in a Model of Pulmonary Airway Reopening
,”
J. Appl. Phys.
,
94
(
2
), pp.
770
783
.
20.
Olbricht
,
W. L.
,
1996
, “
Pore-Scale Prototypes of Multiphase Flow in Porous Media
,”
Annu. Rev. Fluid Mech.
,
28
, pp.
187
213
.
21.
Joseph, D. D., and Renardy, Y., 1991, Fundamentals of Two-Fluid Dynamics, Vol. I: Mathematical Theory and Application; Vol. II.-Lubricated Transport, Drops, and Miscible Liquid, Springer, New York.
22.
Cassidy
,
K. J.
,
Gavriely
,
N.
, and
Grotberg
,
J. B.
,
2001
, “
Liquid Plug Flow in Straight and Bifurcating Tubes
,”
J. Biomech. Eng.
,
123
(
6
), pp.
580
589
.
23.
Howell
,
P. D.
,
Waters
,
S. L.
, and
Grotberg
,
J. B.
,
2000
, “
The Propagation of a Liquid Bolus Along a Liquid-Lined Flexible Tube
,”
J. Fluid Mech.
,
406
, pp.
309
335
.
24.
Waters
,
S. L.
, and
Grotberg
,
J. B.
,
2002
, “
The Propagation of a Surfactant Laden Liquid Plug in a Capillary Tube
,”
Phys. Fluids
,
14
(
2
), pp.
471
480
.
25.
Bretherton
,
F. P.
,
1961
, “
The Motion of Long Bubbles in Tubes
,”
J. Fluid Mech.
,
10
(
2
), pp.
166
188
.
26.
Cox
,
B. G.
,
1962
, “
On Driving a Viscous Fluid out of a Tube
,”
J. Fluid Mech.
,
14
(
1
), pp.
81
96
.
27.
Giavedoni
,
M. D.
, and
Saita
,
F. A.
,
1997
, “
The Axisymmetric and Plane Cases of a Gas Phase Steadily Displacing a Newtonian Liquid—A Simultaneous Solution of the Governing Equations
,”
Phys. Fluids
,
9
(
8
), pp.
2420
2428
.
28.
Heil
,
M.
,
2001
, “
Finite Reynolds Number Effects in the Bretherton Problem
,”
Phys. Fluids
,
13
(
9
), pp.
2517
2521
.
29.
Wassmuth
,
F.
,
Laidlaw
,
W. G.
, and
Coombe
,
D. A.
,
1993
, “
Calculation of Interfacial Flows and Surfactant Redistribution as a Gas-Liquid Interface Moves Between 2 Parallel Plates
,”
Phys. Fluids A
,
5
(
7
), pp.
1533
1548
.
30.
Giavedoni
,
M. D.
, and
Saita
,
F. A.
,
1999
, “
The Rear Meniscus of a Long Bubble Steadily Displacing a Newtonian Liquid in a Capillary Tube
,”
Phys. Fluids
,
11
(
4
), pp.
786
794
.
31.
Horsfield
,
K.
,
Dart
,
G.
, and
Olsen
,
D. E.
,
1971
, “
Models of the Human Bronchial Tree
,”
J. Appl. Phys.
,
11
(
2
), pp.
207
217
.
32.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, London.
33.
Thompson, J. F., Soni, B. K., and Weatherill, N. P., 1999, Handbook of Grid Generation, CRC Press, Boca Raton, Fla.
34.
Wesseling
,
P.
et al.
,
1998
, “
Computing Flows on General Two-Dimensional Nonsmooth Staggered Grids
,”
J. Eng. Math.
,
34
(1–2), pp.
21
44
.
35.
Thompson
,
J. F.
, and
Warsi
,
Z. U.
,
1982
, “
Boundary-Fitted Coordinate System for Numerical Solution of Partial Differential Equations—A Review
,”
J. Comput. Phys.
,
47
, pp.
1
108
.
36.
Deen, W. M., 1998, in Analysis of Transport Phenomena, edited by K. E. Gubbins, Oxford University Press, New York.
37.
Muzaferija
,
S.
, and
Peric
,
M.
,
1997
, “
Computation of Free-Surface Flows Using the Finite-Volume Method and Moving Grids
,”
Numer. Heat Transfer, Part B
,
32
(
4
), pp.
369
384
.
38.
Press, W. H. et al., 1992, Numer. Recipes in C, 2nd ed., Cambridge University Press, Cambridge, England.
39.
Demmel
,
J. W.
et al.
,
1999
, “
A Supernodal Approach to Sparse Partial Pivoting
,”
SIAM J. Matrix Anal. Appl.
,
20
(
3
), pp.
720
755
.
40.
Halpern
,
D.
, and
Gaver
,
D. P.
,
1994
, “
Boundary-Element Analysis of the Time-Dependent Motion of a Semiinfinite Bubble in a Channel
,”
J. Comput. Phys.
,
115
(
2
), pp.
366
375
.
41.
Heil
,
M.
,
2000
, “
Finite Reynolds Number Effects in the Propagation of an Air Finger Into a Liquid-Filled Flexible-Walled Channel
,”
J. Fluid Mech.
,
424
, pp.
21
44
.
You do not currently have access to this content.