In this paper we address the problem of PID stabilization of a single-link inverted pendulum-based biomechanical model with force feedback, two levels of position and velocity feedback, and with delays in all the feedback loops. The novelty of the proposed model lies in its physiological relevance, whereby both small and medium latency sensory feedbacks from muscle spindle (MS), and force feedback from Golgi tendon organ (GTO) are included in the formulation. The biomechanical model also includes active and passive viscoelastic feedback from Hill-type muscle model and a second-order low-pass function for muscle activation. The central nervous system (CNS) regulation of postural movement is represented by a proportional-integral-derivative (PID) controller. Pade´ approximation of delay terms is employed to arrive at an overall rational transfer function of the biomechanical model. The Hermite–Biehler theorem is then used to derive stability results, leading to the existence of stabilizing PID controllers. An algorithm for selection of stabilizing feedback gains is developed using the linear matrix inequality (LMI) approach.

1.
Kataria, A., Ozbay, H., and Hemami, H., 1999, “Point to Point Motion of Skeletal Systems with Multiple Transmission Delays,” Proc. IEEE Conf. on Robotics and Auto., Detroit, MI, Vol. 1, pp. 53–58.
2.
Bobbert
,
A. E.
, and
Schenau van Ingen
,
G. J.
,
1988
, “
Coordination in Vertical Jumping
,”
J. Biomech.
,
21
, pp.
249
262
.
3.
Golliday
,
C. L. J.
, and
Hemami
,
H.
,
1976
, “
Postural Stability of the Two-degree-of-freedom Biped by General Linear Feedback
,”
IEEE Trans. Autom. Control
,
21
, pp.
74
79
.
4.
Pandy
,
M. G.
,
Zajac
,
F. E.
,
Sim
,
E.
, and
Levine
,
W. S.
,
1990
, “
An Optimal Control Model for Maximum-height Human Jumping
,”
J. Biomech.
,
23
, pp.
1185
1198
.
5.
Hemami
,
H.
, and
Katbab
,
A.
,
1982
, “
Constrained Inverted Pendulum Model of Evaluating Upright Postural Stability
,”
J. Dyn. Syst., Meas., Control
,
104
, pp.
343
349
.
6.
Horak
,
F. B.
, and
Nashmer
,
L. M.
,
1986
, “
Central Programming of Postural Movements: Adaptation to Altered Support-surface Configurations
,”
J. Neurophysiol.
,
55
, pp.
1369
1381
.
7.
Camana
,
P. C.
,
Hemami
,
H.
, and
Stockwel
,
C. W.
,
1977
, “
Determination of Feedback for Human Posture Control Without Physical Intervention
,”
J. Cybernetics
,
7
, pp.
199
225
.
8.
Hemami
,
H.
, and
Ozbay
,
H.
,
2000
, “
Modeling and Control of Biological Systems with Multiple Afferent and Efferent Transmission Delays
,”
J. Rob. Syst.
,
17
, pp.
609
622
.
9.
Hemami
,
H.
,
Weimer
,
F. C.
,
Robinson
,
C. S.
,
Stockwell
,
C. W.
, and
Cvetkovic
,
S.
,
1978
, “
Biped Stability Considerations with Vestibular Models
,”
IEEE Trans. Autom. Control
,
23
, pp.
1074
1079
.
10.
Iqbal
,
K.
, and
Pai
,
Y. C.
,
2000
, “
Predicted Region of Stability for Balance Recovery: Motion at the Knee Joint can Improve Termination of Forward Movement
,”
J. Biomech.
,
33
, pp.
1619
1627
.
11.
Pai
,
Y. C.
, and
Iqbal
,
K.
,
1999
, “
Simulated Movement Termination for Balance Recovery: Can Movement Strategies be Sought to Maintain Stability even in the Presence of Slipping or Forced Sliding?
J. Biomech.
,
32
, pp.
779
786
.
12.
Bhattacharyya, S. P., Chapellat, H., and Keel, L., 1995, Robust Control: The Parametric Approach, Prentice-Hall, Englewood Cliffs, NJ, Chap. 1, pp. 38–53.
13.
Ho
,
M.
,
Datta
,
A.
, and
Bhattacharyya
,
S. P.
,
2000
, “
Generalizations of the Hermite–Biehler Theorem: The Complex Case
,”
Linear Algebr. Appl.
,
320
, pp.
23
36
.
14.
Datta, A., Ho, M., and Bhattacharyya, S. P., 1999, Synthesis and Design of PID Controllers, Springer, Berlin, Chap. 3, pp. 25–49.
15.
Ho, M., Datta, A., and Bhattacharyya, S. P., 2000, “A New Approach to Feedback Design,” Technical Report, Department of Electrical Engineering, Texas A&M University, College Station, TX.
16.
Roy, A., and Iqbal, K., 2003, “PID Controller Design for First-Order-Plus-Dead-Time Model via Hermite-Biehler Theorem,” Proc. American Control Conference, Denver, Colorado, Vol. 3, pp. 5286–5291.
17.
Van der Helm, F., and Rozendaal, L., 2000, “Musculoskeletal Systems with Intrinsic and Proprioceptive Feedback,” in Biomechanics and Neural Control of Movement and Posture, edited by J. M. Winters, and P. E. Crago, Springer, New York, Chap. 11, pp. 164–174.
18.
Brown, I. E., and Loeb, G. E., 2000, “A Reductionist Approach to Creating and Using Neuromusculoskeletal Models,” in Biomechanics and Neural Control of Movement and Posture, edited by J. M. Winters, and P. E. Crago, Springer, New York, Chap. 10, pp. 148–163.
19.
Stroeve, S. H., 1998, “Impedance Characteristics of a Neuromusculoskeletal Model of the Human Arm: I. Posture Control,” in Neuromuscular Control of Arm Movements, Ph.D. thesis, Delft University of Technology, Delft, The Netherlands, Chap. 5, pp. 86–90.
20.
Stroeve
,
S.
,
1999
, “
Impedance characteristics of a neuromusculoskeletal model of the human arm. I. Posture control
,”
Biol. Cybern.
,
81
, No.
5–6
, pp.
475
495
.
21.
Rozendaal, L. A., 1997, “Stability of the Shoulder: Intrinsic Muscle Properties and Reflexive Control,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
22.
Baker, G. A., Jr., 1965, “The Theory and Application of The Pade´ Approximant Method,” in Advances in Theoretical Physics, edited by K. A. Brueckner, Academic, New York, Vol. 1. pp. 1–58.
23.
Jones, G. A., and Jones, J. M., 1998, “Be´zout’s Identity,” in Elementary Number Theory, Springer, Berlin, Chap. 1. pp. 7–11.
24.
Ho
,
M.
,
Datta
,
A.
, and
Bhattacharyya
,
S. P.
,
1999
, “
Generalizations of the Hermite-Biehler Theorem
,”
Linear Algebr. Appl.
,
302
, pp.
135
153
.
25.
Roy, A., and Iqbal, K., 2003, “PID Controller Stabilization of a Single-Link Biomechanical Model with Multiple Delayed Feedbacks,” Proc. IEEE Conf. on Systems, Man, and Cyb., Washington, D.C., Vol. 1, pp. 642–647.
26.
Johansson
,
R.
,
Magnusson
,
M.
, and
Akesson
,
M.
,
1988
, “
Identification of Human Postural Dynamics
,”
IEEE Trans. Biomed. Eng.
,
35
, No.
10
, pp.
858
869
.
27.
Peterka
,
R. J.
,
2002
, “
Sensorimotor Integration in Human Postural Control
,”
J. Neurophysiol.
,
88
, pp.
1097
1118
.
28.
He
,
J.
,
Levine
,
W. S.
, and
Loeb
,
G. E.
,
1991
, “
Feedback Gains for Correcting Small Perturbations to Standing Posture
,”
IEEE Trans. Autom. Control
,
36
, No.
3
, pp.
322
332
.
29.
Barin
,
K.
,
1989
, “
Evaluation of a General Model of Human Postural Dynamics and Control in the Sagittal Plane
,”
Biol. Cybern.
,
61
, pp.
37
50
.
30.
Sinkjaer
,
T. S.
,
Toft
,
E.
,
Andreassen
,
S.
, and
Hornemann
,
B. C.
,
1988
, “
Muscle Stiffness in Human Ankle Dorsiflexors: Intrinsic and Reflex Components
,”
J. Neurophysiol.
,
60
, pp.
1110
1121
.
31.
Brooks, V., 1986, The Neural Basis of Motor Control, Oxford University Press, Oxford Chap. 4.
32.
Hidler
,
J.
, and
Rymer
,
W. Z.
,
1999
, “
A Simulation Study of Reflex Instability in Spasticity: Origins of Clonus
,”
IEEE Trans. Rehabil. Eng.
,
7
, No.
3
, pp.
327
340
.
You do not currently have access to this content.