We present results on the growth of damage in 29 fatigue tests of human femoral cortical bone from four individuals, aged 53–79. In these tests we examine the interdependency of stress, cycles to failure, rate of creep strain, and rate of modulus loss. The behavior of creep rates has been reported recently for the same donors as an effect of stress and cycles (Cotton, J. R., Zioupos, P., Winwood, K., and Taylor, M., 2003, “Analysis of Creep Strain During Tensile Fatigue of Cortical Bone,” J. Biomech. 36, pp. 943–949). In the present paper we first examine how the evolution of damage (drop in modulus per cycle) is associated with the stress level or the “normalized stress” level (stress divided by specimen modulus), and results show the rate of modulus loss fits better as a function of normalized stress. However, we find here that even better correlations can be established between either the cycles to failure or creep rates versus rates of damage than any of these three measures versus normalized stress. The data indicate that damage rates can be excellent predictors of fatigue life and creep strain rates in tensile fatigue of human cortical bone for use in practical problems and computer simulations.

1.
Freeman
,
M. A. R.
,
Todd
,
R. D.
, and
Pirie
,
C. J.
, 1974, “
The Role of Fatigue in Pathogenesis of Senile Femoral Neck Fractures
,”
J. Bone Joint Surg. Br.
0301-620X
56B
, pp.
698
702
.
2.
Zioupos
,
P.
,
Wang
,
X. T.
, and
Currey
,
J. D.
, 1996, “
The Accumulation of Fatigue Microdamage in Human Cortical Bone of Two Different Ages in Vitro.
Clin. Biomech. (Los Angel. Calif.)
0191-7870
11
(
7
), pp.
365
375
.
3.
Zioupos
,
P.
,
Currey
,
J. D.
, and
Casinos
,
A.
, 2001, “
Tensile Fatigue in Bone: Are Cycles-, or Time to Failure, or Both, Important
?”
J. Theor. Biol.
0022-5193
210
(
3
), pp.
389
399
.
4.
Taylor
,
M.
, and
Tanner
,
K. E.
, 1997, “
Fatigue Failure of Cancellous Bone: A Possible Cause of Implant Migration and Loosening
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X Vol.
79B
(
2
), pp.
181
182
.
5.
Swanson
,
S. A. V.
,
Freeman
,
M. A. R.
, and
Day
,
W. H.
, 1971, “
The Fatigue Properties of Human Cortical Bone
,”
Med. Biol. Eng.
0025-696X
9
, pp.
23
32
.
6.
Carter
,
D. R.
, and
Hayes
,
W. C.
, 1977, “
Compact Bone Fatigue Damage-I: Residual Strength and Stiffness
,”
J. Biomech.
0021-9290
10
, pp.
325
337
.
7.
Carter
,
D. R.
,
Caler
,
W. E.
,
Spengler
,
D. M.
, and
Frankel
,
V. H.
, 1981, “
Fatigue Behavior of Adult Cortical Bone: The Influence of Mean Strain and Strain Range
,”
Acta Orthop. Scand.
0001-6470
52
(
5
), pp.
481
490.
.
8.
Carter
,
D. R.
,
Caler
,
W. E.
,
Spengler
,
D. M.
, and
Frankel
,
V. H.
, 1981, “
Uniaxial Fatigue of Human Cortical Bone: The Influence of Tissue Physical Characteristics
,”
J. Biomech.
0021-9290
14
, pp.
461
470
.
9.
Carter
,
D. R.
, and
Caler
,
W. E.
, 1983, “
Cycle-Dependent and Time-Dependent Bone Fracture With Repeated Loading
,”
ASME J. Biomech. Eng.
0148-0731
105
(
2
), pp.
166
170
.
10.
Carter
,
D. R.
, and
Caler
,
W. E.
, 1985, “
A Cumulative Damage Model for Bone Fracture
.”
J. Orthop. Res.
0736-0266
3
(
1
), pp.
84
90
.
11.
Choi
,
K.
, and
Goldstein
,
S. A.
, 1992, “
A
Comparison of the Fatigue Behavior of Human Trabecular and Cortical Bone
Tissue
,”
J. Biomech.
25
(
12
), pp.
1371
1381
.
12.
Griffin
,
L. V.
,
Gibeling
,
J. C.
,
Martin
,
R. B.
,
Gibson
,
V. A.
, and
Stover
,
S. M.
, 1999, “
The Effects of Testing Methods on the Flexural Fatigue Life of Human Cortical Bone
,”
J. Biomech.
0021-9290
32
, pp.
105
109
.
13.
Turner
,
C. H.
,
Wang
,
T.
, and Burr
,
D. B.
, 2001, “
Shear Strength and Fatigue Properties of Human Cortical Bone Determined from Pure Shear Tests
,”
Calcif. Tissue Int.
0171-967X
69
(
6
), pp.
373
378
.
14.
King
,
A. I.
, and
Evans
,
F. G.
, 1967, “
Analysis of Fatigue Strength of Human Compact Bone by the Weibull Method
,” in
Dig 7th Int. Conf. Med and Biol Eng.
Stockholm.
15.
Zioupos
,
P.
, and Casinos
,
A.
, 1998, “
Cumulative Damage and the Response of Human Bone in Two Step Loading Failure
,”
J. Biomech.
0021-9290
31
, pp.
825
833
.
16.
Pattin
,
C. A.
,
Caler
,
W. E.
, and
Carter
,
D. R.
, 1996, “
Cyclic Mechanical Property Degradation During Fatigue Loading of Cortical Bone
,”
J. Biomech.
0021-9290
29
(
1
), pp.
69
79
.
17.
Zioupos
,
P.
,
Winwood
,
K.
,
Cotton
,
J.
, and
Taylor
,
M.
, 2002, “
The Development of Elastic and ‘Plastic’ Strains During Fatigue Damage Accumulation of Human Cortical Bone
,” in
Acta Bioengng. and Biomechanics, Proc. 13th ESB Conference
,
Wroclaw
, Poland.
18.
Pidaparti
,
R. M. V.
, and
Vogt
,
A.
, 2001, “
Experimental Investigation of Poisson’s Ratio as a Damage Parameter for Bone Fatigue
,”
J. Biomed. Mater. Res.
0021-9304
59
(
2
), pp.
282
287
.
19.
Taylor
,
M.
,
Verdonschot
,
N.
, Huiskes
,
,
R.
, and
Zioupos
,
P.
, 1999, “
A Combined Finite Element Method and Continuum Damage Mechanics Approach to Simulate the in Vitro Fatigue Behavior of Human Cortical Bone
,”
J. Mater. Sci.: Mater. Med.
0957-4530
10
(
12
), pp.
841
846
.
20.
Jepsen
,
K. J.
, and
Davy
,
D. T.
, 1997, “
Comparison of Damage Accumulation Measures in Human Cortical Bone
,”
J. Biomech.
0021-9290
30
(
9
), pp.
891
894
.
21.
Cotton
,
J. R.
,
Winwood
,
K.
,
Zioupos
,
P.
, and
Taylor
,
M.
, 2003, “
Relationship Between Cycles to Failure and Rates of Damage and Creep in Fatigue Tests of Human Cortical Bone
,” in
ASME Summer Bioengineering Conference
,
Key Biscayne
, Florida.
22.
Cotton
,
J. R.
,
Zioupos
,
P
,
Winwood
,
K
, and Taylor
,
M
, 2003, “
Analysis of Creep Strain During Tensile Fatigue of Cortical Bone
,”
J. Biomech.
0021-9290
36
, pp.
943
949
.
23.
Carter
,
D. R.
, and
Hayes
,
W. C.
, 1977, “
The Compressive Behavior of Bone as a Two-Phase Porous Structure
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355
59
, pp.
954
962
.
24.
Zioupos
,
P.
,
Currey
,
J. D.
, and Sedman
,
A. J.
, 1994, “
An Examination of the Micromechanics of Failure of Bone and Antler by Acoustic-Emission Tests and Laser-Scanning-Confocal- Microscopy
,”
Meas. Control
0020-2940
16
(
3
), pp.
203
212
.
25.
Ker
,
,
R
, and
Zioupos
,
P.
, 1997, “
Creep and Fatigue Damage of Mammalian Tendon and Bone
,”
Comments on Theoretical Biology
,
4
(
2-3
), pp.
151
181
.
You do not currently have access to this content.