Abstract

The purpose of this study was to analytically exploit the capabilities of head-mounted systems instrumented with linear accelerometers (ACs) for field use in redundant configurations. We simulated different headsets equipped with uni-, bi- or triaxial sensors with a number of axes that lie in the range of 12–24; the ACs were located on a hemispherical surface by adopting a priori criterion while their orientation was randomized. In addition, for a comparative purpose the nine accelerometer scheme (one triaxial AC and three biaxial ACs addressed in the following as “3-2-2-2 configuration”) was also analyzed in the present paper. We simulated and statistically assessed the performances of hemispherical headsets in the test case of a healthy subject walking freely at normal pace over level ground. The numerical results indicated that a well designed instrumented headset can retrieve the angular acceleration and (a0g) component with rms errors of about 2% and 0.5%, respectively, and angular velocity with a drift error of about 20% in a 6s trial. On the contrary, the pose of the headset cannot be evaluated because of the drift induced by the integration process. In general, we can state that headsets with uni-, bi- or triaxial ACs have comparable performances. The main implications of the above-mentioned observations are (a) neither expensive triaxial ACs nor assembling procedure based on the use of orthogonal mounting blocks are needed; (b) redundant arrays of low-cost uni- or biaxial ACs can effectively be used to reach adequate performances in biomechanical studies where head acceleration and velocity are investigated; (c) while estimates of angular acceleration with accelerometers are accurate, estimations of angular velocities, linear velocities and pose are not.

References

1.
Vitte
,
E.
, and
Semont
,
A.
, 1995, “
Assessment of Vestibular Function by Videonystagmoscopy
,”
J. Vestib. Res.
0957-4271,
5
, pp.
377
383
.
2.
Keshner
,
E. A.
,
Cromwell
,
R. L.
, and
Peterson
,
B. W.
, 1995, “
Mechanisms Controlling Human Head Stabilization. II. Head-Neck Characteristics During Random Rotations in the Vertical Plane
,”
J. Neurophysiol.
0022-3077,
73
, pp.
2302
2312
.
3.
Keshner
,
F. A.
, and
Peterson
,
B. W.
, 1995, “
Mechanisms Controlling Human Head Stabilization. I. Head-Neck Dynamics During Random Rotations in the Horizontal Plane
,”
J. Neurophysiol.
0022-3077,
73
, pp.
2293
2301
.
4.
Willemsen
,
A. M.
,
Frigo
,
C.
, and
Boom
,
H. B. K.
, 1991, “
Lower Extremity Angle Measurement With Accelerometers—Errors and Sensitivity Analysis
,”
IEEE Trans. Biomed. Eng.
0018-9294,
38
, pp.
1186
1193
.
5.
van den Bogert
,
A. J.
,
Read
,
L.
, and
Nigg
,
B. M.
, 1996, “
A Method for Inverse Dynamic Analysis Using Accelerometry
,”
J. Biomech.
0021-9290,
29
, No.
7
, pp.
949
954
.
6.
Carpaneto
,
J.
,
Micera
,
S.
,
Galardi
,
G.
,
Micheli
,
A.
,
Carboncini
,
M. C.
,
Rossi
,
B.
, and
Dario
,
P.
, 2004, “
A Protocol for the Assessment of 3D Movements of the Head in Persons With Cervical Dystonia
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
19
, pp.
659
663
.
7.
Aminiana
,
K.
,
Najafi
,
B.
,
Bula
,
C.
,
Leyvraz
,
P. F.
, and
Robert
,
P.
, 2002, “
Spatio-Temporal Parameters of Gait Measured by an Ambulatory System Using Miniature Gyroscopes
,”
J. Biomech.
0021-9290,
35
, pp.
689
699
.
8.
Terrier
,
P.
,
Ladetto
,
Q.
,
Merminod
,
B.
, and
Schutz
,
Y.
, 2000, “
High Precision Satellite Positioning System as a New Tool to Study the Biomechanics of Human Locomotion
,”
J. Biomech.
0021-9290,
33
, pp.
1717
1722
.
9.
Mayagoitia
,
R. E.
,
Nene
,
A. V.
, and
Veltink
,
P. H.
, 2002, “
Accelerometer and Rate Gyroscope Measurement of Kinematics: an Inexpensive Alternative to Optical Motion Analysis Systems
,”
J. Biomech.
0021-9290,
35
, pp.
537
542
.
10.
Kemp
,
B.
,
Janssen
,
J. M. W.
, and
van der Kamp
,
B.
, 1998, “
Body Position can be Monitored in 3D Using Miniature Accelerometers and Earth-Magnetic Field Sensors
,”
Electroencephalogr. Clin. Neurophysiol.
0924-980X,
109
, pp.
484
488
.
11.
Morris
,
J. R.
, 1973, “
Accelerometry-A Technique for the Measurement of Human Body Movements
,”
J. Biomech.
0021-9290,
6
, pp.
729
736
.
12.
Liu
,
K.
, 1976, “
Discussion on Measurement of Angular Acceleration of a Rigid Body Using Linear Accelerometers
,”
ASME J. Appl. Mech.
0021-8936,
43
, pp.
977
978
.
13.
Padgaonkar
,
A. J.
,
Krieger
,
K. W.
, and
King
,
A. I.
, 1975, “
Measurement of Angular Acceleration of a Rigid Body Using Linear Accelerometers
,”
ASME J. Appl. Mech.
0021-8936,
42
, pp.
552
558
.
14.
Nusholtz
,
G. S.
,
Wu
,
J.
, and
Kaiker
,
P.
, 1991, “
Passenger Air Bag Study Using Geometric Analysis of Rigid Body Motion
,”
Exp. Mech.
0014-4851,
31
, No.
3
, pp.
264
270
.
15.
Nusholtz
,
G. S.
, 1993, “
Geometric Methods in Determining Rigid-Body Dynamics
,”
Exp. Mech.
0014-4851,
33
(
2
), pp.
153
158
.
16.
Anderson
,
R. W. G.
,
Brown
,
C. J.
,
Blumbergs
,
P. C.
,
Mclean
,
J. A.
, and
Jones
,
N. R.
, 2003, “
Impact Mechanics and Axonal Injury in a Sheep Model
,”
J. Neurotrauma
0897-7151,
20
, No.
10
, pp.
961
974
.
17.
Newman
,
J. A.
,
Beusenberg
,
M. C.
,
Shewchenko
,
N.
,
Withnall
,
C.
, and
Fournier
,
E.
, “
Verification of Biomechanical Methods Employed in a Comprehensive Study of Mild Traumatic Brain Injury and the Effectiveness of American Football Helmets
,”
J. Biomech.
0021-9290, (to be published).
18.
Crisco
,
J. J.
,
Chu
,
J. J.
, and
Greenwald
,
R. M.
, 2004, “
An Algorithm for Estimating Acceleration Magnitude and Impact Location Using Multiple Nonorthogonal Single-Axis Accelerometers
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
849
854
.
19.
Giansanti
,
D.
,
Macellari
,
V.
,
Maccioni
,
G.
, and
Cappozzo
,
A.
, 2003, “
Is it Feasible to Reconstruct Body Segment 3-D Position and Orientation Using Accelerometric Data
?”
IEEE Trans. Biomed. Eng.
0018-9294,
50
, pp.
476
483
.
20.
Baselli
,
G.
,
Legnani
,
G.
,
Franco
,
P.
,
Brognoli
,
F.
,
Marras
,
A.
,
Quaranta
,
F.
, and
Zappa
,
B.
, 2001, “
Assessment of Inertial and Gravitational Inputs to the Vestibular System
,”
J. Biomech.
0021-9290,
34
, pp.
821
826
.
21.
Zappa
,
B.
,
Legnani
,
G.
,
van den Bogert
,
A. J.
, and
Adamini
,
R.
, 2001, “
On the Number and Placement of Accelerometers for Angular Velocity and Acceleration Determination
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
, pp.
552
554
.
22.
Parsa
,
K.
,
Angeles
,
J.
, and
Misra
,
A. K.
, 2001, “
Pose-and-Twist Estimation of a Rigid Body Using Accelerometers
,”
Proceedings of the 2001 IEEE International Conference on Robotic and Automation
, Seoul, Korea, pp.
2873
2878
.
23.
Parsa
,
K.
,
Angeles
,
J.
, and
Misra
,
A. K.
, 2002, “
Attitude Calibration of an Accelerometer Array
,”
Proceedings of the 2002 IEEE International Conference on Robotic and Automation
, Washington, DC, USA, pp.
129
134
.
24.
Williams
,
T. R.
, and
Fyfe
,
K. R.
, 2004, “
Planar Accelerometer Configurations
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
10
14
.
25.
Cappa
,
P.
,
Masia
,
L.
,
Patanè
,
F.
, and
Pierro
,
M. M.
, 2004, “
Experimental Evaluation of the Sensitivity Matrix of Low Cost TriAxial Accelerometers
,”
10 pages, ICEM12 12th International Conference on Experimental Mechanics
, Bari (ITALY).
26.
Leader
,
J. J.
, 2004,
Numerical Analysis and Scientific Computation
,
Addison-Wesley
, Redwood City, CA.
You do not currently have access to this content.