The locations of the joint axes of the ankle complex vary considerably between subjects, yet no noninvasive method with demonstrated accuracy exists for locating these axes. The moments of muscle and ground reaction forces about the joint axes are dependent on axis locations, making knowledge of these locations critical to accurate musculoskeletal modeling of the foot and ankle. The accuracy of a computational optimization method that fits a two-revolute model to measured motion was assessed using computer-generated data, a two-revolute mechanical linkage, and three lower-leg cadaver specimens. Motions were applied to cadaver specimens under axial load while bone-mounted markers attached to the tibia, talus, and calcaneus were tracked using a video-based motion analysis system. Estimates of the talocrural and subtalar axis locations were computed from motions of the calcaneus relative to the tibia using the optimization method. These axes were compared to mean helical axes computed directly from tibia, talus, and calcaneus motions. The optimization method performed well when the motions were computer-generated or measured in the mechanical linkage, with angular differences between optimization and mean helical axes ranging from 1deg to 5deg. In the cadaver specimens, however, these differences exceeded 20deg. Optimization methods that locate the anatomical joint axes of the ankle complex by fitting two revolute joints to measured tibia-calcaneus motions may be limited because of problems arising from non-revolute behavior.

1.
Manter
,
J. T.
, 1941, “
Movements of the Subtalar and Transverse Tarsal Joints
,”
Anat. Rec.
0003-276X,
80
, pp.
397
410
.
2.
Inman
,
V. T.
, 1976,
The Joints of the Ankle
,
Williams and Wilkins
, Baltimore.
3.
van Langelaan
,
E. J.
, 1983, “
A Kinematical Analysis of the Tarsal Joints. An X-ray Photogrammetric Study
,”
Acta Orthop. Scand. Suppl.
0300-8827,
204
, pp.
1
269
.
4.
Lundberg
,
A.
,
Svensson
,
O. K.
,
Nemeth
,
G.
, and
Selvik
,
G.
, 1989, “
The Axis of Rotation of the Ankle Joint
,”
J. Bone Joint Surg. Br.
0301-620X,
71
, pp.
94
99
.
5.
Lundberg
,
A.
, and
Svensson
,
O. K.
, 1993, “
The Axes of Rotation of the Talocalcaneal and Talonavicular Joints
,”
The Foot
,
3
, pp.
65
70
.
6.
Leardini
,
A.
,
Stagni
,
R.
, and
O’Connor
,
J. J.
, 2001, “
Mobility of the Subtalar Joint in the Intact Ankle Complex
,”
J. Biomech.
0021-9290,
34
, pp.
805
809
.
7.
Lapidus
,
P. W.
, 1955, “
Subtalar Joint, its Anatomy and Mechanics
,”
Bull. Hosp. Jt. Dis.
0018-5647,
16
, pp.
179
195
.
8.
Pierce
,
J. E.
, and
Li
,
G.
, 2005, “
Muscle Forces Predicted Using Optimization Methods are Coordinate System Dependent
,”
J. Biomech.
0021-9290,
38
, pp.
695
702
.
9.
Hicks
,
J. H.
, 1953, “
The Mechanics of the Foot. I. The Joints
,”
J. Anat.
0021-8782,
87
, pp.
345
357
.
10.
Arndt
,
A.
,
Westblad
,
P.
,
Winson
,
I.
,
Hashimoto
,
T.
, and
Lundberg
,
A.
, 2004, “
Ankle and Subtalar Kinematics Measured with Intracortical Pins During the Stance Phase of Walking
,”
Foot Ankle Int.
1071-1007,
25
, pp.
357
364
.
11.
Siegler
,
S.
,
Udupa
,
J. K.
,
Ringleb
,
S. I.
,
Imhauser
,
C. W.
,
Hirsh
,
B. E.
,
Odhner
,
D.
,
Saha
,
P. K.
,
Okereke
,
E.
, and
Roach
,
N.
, 2005, “
Mechanics of the Ankle and Subtalar Joints Revealed Through a 3D Quasi-Static Stress MRI Technique
,”
J. Biomech.
0021-9290,
38
, pp.
567
578
.
12.
Dul
,
J.
, and
Johnson
,
G. E.
, 1985, “
A Kinematic Model of the Human Ankle
,”
J. Biomed. Eng.
0141-5425,
7
, pp.
137
143
.
13.
Spoor
,
C. W.
, and
Veldpaus
,
F. E.
, 1980, “
Rigid Body Motion Calculated From Spatial Co-Ordinates of Markers
,”
J. Biomech.
0021-9290,
13
, pp.
391
393
.
14.
Woltring
,
H. J.
,
Huiskes
,
R.
,
de Lange
,
A.
, and
Veldpaus
,
F. E.
, 1985, “
Finite Centroid and Helical Axis Estimation From Noisy Landmark Measurements in the Study of Human Joint Kinematics
,”
J. Biomech.
0021-9290,
18
, pp.
379
389
.
15.
Woltring
,
H. J.
, 1990, “
Data Processing and Error Analysis
,” in
Biomechanics of Human Movement
,
N.
Berme
, and
A.
Cappozzo
, eds.,
Bertec Corporation
,
Worthington
, Ohio, pp.
203
237
.
16.
Gamage
,
S. S.
, and
Lasenby
,
J.
, 2002, “
New Least Squares Solutions for Estimating the Average Centre of Rotation and the Axis of Rotation
,”
J. Biomech.
0021-9290,
35
, pp.
87
93
.
17.
Wright
,
D. G.
,
Desai
,
S. M.
, and
Henderson
,
W. H.
, 1964, “
Action of the Subtalar and Ankle-Joint Complex During the Stance Phase of Walking
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
46
, pp.
361
382
.
18.
Kirby
,
K. A.
, 1987, “
Methods for Determination of Positional Variations in the Subtalar Joint Axis
,”
J. Am. Podiatr. Med. Assoc.
8750-7315,
77
, pp.
228
234
.
19.
Phillips
,
R. D.
, and
Lidtke
,
R. H.
, 1992, “
Clinical Determination of the Linear Equation for the Subtalar Joint Axis
,”
J. Am. Podiatr. Med. Assoc.
8750-7315,
82
, pp.
1
20
.
20.
Leardini
,
A.
,
O‘Connor
,
J. J.
,
Catani
,
F.
, and
Giannini
,
S.
, 1999, “
A Geometric Model of the Human Ankle Joint
,”
J. Biomech.
0021-9290,
32
, pp.
585
591
.
21.
Sommer
,
H. J.
, 3rd
, and
Miller
,
N. R.
, 1980, “
A Technique for Kinematic Modeling of Anatomical Joints
,”
J. Biomech. Eng.
0148-0731,
102
, pp.
311
317
.
22.
van den Bogert
,
A. J.
,
Smith
,
G. D.
, and
Nigg
,
B. M.
, 1994, “
In Vivo Determination of the Anatomical Axes of the Ankle Joint Complex: An Optimization Approach
,”
J. Biomech.
0021-9290,
27
, pp.
1477
1488
.
23.
Pierrynowski
,
M. R.
,
Finstad
,
E.
,
Kemecsey
,
M.
, and
Simpson
,
J.
, 2003, “
Relationship Between the Subtalar Joint Inclination Angle and the Location of Lower-Extremity Injuries
,”
J. Am. Podiatr. Med. Assoc.
8750-7315,
93
, pp.
481
484
.
24.
Reinbolt
,
J. A.
,
Schutte
,
J. F.
,
Fregly
,
B. J.
,
Koh
,
B. I.
,
Haftka
,
R. T.
,
George
,
A. D.
, and
Mitchell
,
K. H.
, 2005, “
Determination of Patient-Specific Multi-Joint Kinematic Models Through Two-Level Optimization
,”
J. Biomech.
0021-9290,
38
, pp.
621
626
.
25.
Siston
,
R. A.
,
Daub
,
A. C.
,
Giori
,
N. J.
,
Goodman
,
S. B.
, and
Delp
,
S. L.
, 2005, “
Evaluation of Methods That Locate the Center of the Ankle for Computer-assisted Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
439
, pp.
129
135
.
26.
Levenberg
,
K.
, 1944, “
A Method for the Solution of Certain Non-Linear Problems with Least Squares
,”
Q. Appl. Math.
0033-569X,
2
, pp.
164
168
.
27.
Marquardt
,
D. W.
, 1963, “
An Algorithm for Least-Squares Estimation of Non-Linear Parameters
,”
J. Soc. Ind. Appl. Math.
0368-4245,
11
, pp.
431
441
.
28.
Cappozzo
,
A.
,
Catani
,
F.
,
Croce
,
U. D.
, and
Leardini
,
A.
, 1995, “
Position and Orientation in Space of Bones During Movement: Anatomical Frame Definition and Determination
,”
Clin. Biomech.
,
10
, pp.
171
178
.
29.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D‘Lima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
, and
Stokes
,
I.
, 2002, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I. Ankle, Hip, and Spine. International Society of Biomechanics
,”
J. Biomech.
0021-9290,
35
, pp.
543
548
.
30.
Challis
,
J. H.
, 1995, “
A Procedure for Determining Rigid Body Transformation Parameters
,”
J. Biomech.
0021-9290,
28
, pp.
733
737
.
31.
Schwartz
,
M. H.
, and
Rozumalski
,
A.
, 2005, “
A New Method for Estimating Joint Parameters From Motion Data
,”
J. Biomech.
0021-9290,
38
, pp.
107
116
.
You do not currently have access to this content.