It is generally acknowledged that rupture of an abdominal aortic aneurysm (AAA) occurs when the stress acting on the wall over the cardiac cycle exceeds the strength of the wall. Peak wall stress computations appear to give a more accurate rupture risk assessment than AAA diameter, which is currently used for a diagnose. Despite the numerous studies utilizing patient-specific wall stress modeling of AAAs, none investigated the effect of wall calcifications on wall stress. The objective of this study was to evaluate the influence of calcifications on patient-specific finite element stress computations. In addition, we assessed whether the effect of calcifications could be predicted directly from the CT-scans by relating the effect to the amount of calcification present in the AAA wall. For 6 AAAs, the location and extent of calcification was identified from CT-scans. A finite element model was created for each AAA and the areas of calcification were defined node-wise in the mesh of the model. Comparisons are made between maximum principal stress distributions, computed without calcifications and with calcifications with varying material properties. Peak stresses are determined from the stress results and related to a calcification index (CI), a quantification of the amount of calcification in the AAA wall. At calcification sites, local stresses increased, leading to a peak stress increase of 22% in the most severe case. Our results displayed a weak correlation between the CI and the increase in peak stress. Additionally, the results showed a marked influence of the calcification elastic modulus on computed stresses. Inclusion of calcifications in finite element analysis of AAAs resulted in a marked alteration of the stress distributions and should therefore be included in rupture risk assessment. The results also suggest that the location and shape of the calcified regions—not only the relative amount—are considerations that influence the effect on AAA wall stress. The dependency of the effect of the wall stress on the calcification elastic modulus points out the importance of determination of the material properties of calcified AAA wall.

1.
Daugherty
,
A.
, and
Cassis
,
L. A.
, 2002, “
Mechanisms of Abdominal Aortic Aneurysm Formation
,”
Curr. Atheroscler Rep.
,
4
(
3
), pp.
222
227
.
2.
Bush
,
R.
,
Lin
,
P. H.
, and
Lumsden
,
A. B.
, 2003, “
Endovascular Management of Abdominal Aortic Aneurysms
,”
J. Cardiovasc. Surg.
0021-9509,
44
(
4
), pp.
527
534
.
3.
Gorham
,
T. J.
,
Taylor
,
J.
, and
Raptis
,
S.
, 2004, “
Endovascular Treatment of Abdominal Aortic Aneurysm
,”
Br. J. Surg.
0007-1323,
91
(
7
), pp.
815
827
.
4.
Greenhalgh
,
R. M.
,
Brown
,
L. C.
,
Kwong
,
G. P.
,
Powell
,
J. T.
,
Thompson
,
S. G.
, and EVAR trial participants, 2004, “
Comparison of Endovascular Aneurysm Repair With Open Repair in Patients With Abdominal Aortic Aneurysms (EVAR trail 1), 30-Day Operative Mortality Results: Randomised Controlled Trail
,”
Lancet
0140-6736,
364
(
9437
), pp.
818
820
.
5.
Choke
,
E.
,
Cockerill
,
G.
,
Wilson
,
W. R.
,
Sayed
,
S.
,
Dawson
,
J.
,
Loftus
,
I.
, and
Thompson
,
M. M.
, 2005, “
A Review of Biological Factors Implicated in AAA Rupture
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
30
(
3
), pp.
227
244
.
6.
Mower
,
W. R.
,
Quinones
,
W. J.
, and
Gambhir
,
S. S.
, 1997, “
Effect of Intraluminal Thrombus on Abdominal Aortic Aneurysm Wall Stress
,”
J. Vasc. Surg.
0741-5214,
26
(
4
) pp.
602
608
.
7.
Hall
,
A. J.
,
Busse
,
E. F.
,
McCarville
,
D. J.
, and
Burgess
,
J. J.
, 2000, “
Aortic Wall Tension as a Predictive Factor for Abdominal Aortic Aneurysm Rupture: Improving the Selection of Patients for Abdominal Aortic Aneurysm Repair
,”
Ann. Vasc. Surg.
0890-5096,
14
(
2
), pp.
152
157
.
8.
Raghavan
,
M. L.
,
Vorp
,
D. A.
,
Federle
,
M. P.
,
Makaroun
,
M. S.
, and
Webster
,
M. W.
, 2000, “
Wall Stress Distribution on Three-Dimensionally Reconstructed Models of Human Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
0741-5214,
31
(
4
), pp.
760
769
.
9.
Inzoli
,
F.
,
Boschetti
,
F.
,
Zappa
,
M.
,
Longo
,
T.
, and
Fumero
,
R.
, 1993, “
Biomechanical Factors in Abdominal Aortic Aneurysm Rupture
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
7
(
6
), pp.
667
674
.
10.
Elger
,
D. F.
,
Blackketter
,
D. M.
,
Budwig
,
R. S.
, and
Johansen
,
K. H.
, 1996, “
The Influence of Shape on the Stresses in Model Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
3
), pp.
326
332
.
11.
Wang
,
D. H.
,
Makaroun
,
M. S.
,
Webster
,
M. W.
, and
Vorpp
,
D. A.
, 2002, “
Effect of Intraluminal Thrombus on Wall Stress in Patient-Specific Models of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
0741-5214,
36
(
3
), pp.
598
604
.
12.
Fillinger
,
M. F.
,
Raghavan
,
M. L.
,
Marra
,
S. P.
,
Cronenwett
,
J. L.
, and
Kennedy
,
F. E.
, 2002, “
In Vivo Analysis of Mechanical Wall Stress and Abdominal Aortic Aneurysm Rupture Risk
,”
J. Vasc. Surg.
0741-5214,
36
(
3
), pp.
589
597
.
13.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
, 2003, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
0741-5214,
37
(
4
), pp.
724
732
.
14.
Thubrikar
,
M. J.
,
al-Soudi
,
J.
, and
Robicsek
,
F.
, 2001, “
Wall Stress Studies of Abdominal Aortic Aneurysm in a Clinical Model
,”
Ann. Vasc. Surg.
0890-5096,
15
(
3
), pp.
355
366
.
15.
Di Martino
,
E. S.
,
Mantero
,
S.
,
Inzoli
,
F.
,
Melissano
,
G.
,
Astore
,
D.
,
Chiesa
,
R.
, and
Fumero
,
R.
, 1998, “
Biomechanics of Abdominal Aortic Aneurysm in the Presence of Endoluminal Thrombus: Experimental Characterisation and Structural Static Computational Analysis
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
15
(
4
), pp.
290
299
.
16.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
, 2000, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of its Applicability
,”
J. Biomech.
0021-9290,
33
(
4
), pp.
475
482
.
17.
Wang
,
D. H.
,
Makaroun
,
M.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
, 2001, “
Mechanical Properties and Microstructure of Intraluminal Thrombus From Abdominal Aortic Aneurysm
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
6
), pp.
536
539
.
18.
Vorp
,
D. A.
, 1997, “
Fluid Mechanical Considerations in Vascular Grafts. Overview
,”
ASAIO J.
1058-2916,
43
(
3
), pp.
237
238
.
19.
Loree
,
H. M.
,
Grodzinsky
,
A. J.
,
Park
,
S. Y.
,
Gibson
,
L. J.
, and
Lee
,
R. T.
, 1994, “
Static Circumferential Tangential Modulus of Human Atherosclerotic Tissue
,”
J. Biomech.
0021-9290,
27
(
2
), pp.
195
204
.
20.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
, 2006, “
Inverse Elastostatic Stress Analysis in Pre-deformed Biological Structures: Demonstration Using Abdominal Aortic Aneurysms
,” J. Biomech. (in press).
21.
Gasbarro
,
M. D.
,
Di Martino
,
E. S.
,
Scotti
,
C. M.
,
Finol
,
E. A.
, and
Shimada
,
K.
, 2005, “
Computational Modeling of Abdominal Aortic Aneurysm: A New Simulation Technique That Demonstrates the Importance of Including Realistic Fluid Motion, Spinal Column and Internal Organs
,” ASME Summer Bioengineering Conference. Vail, CO.
22.
Holzapfel
,
G. A.
,
Sommer
,
G.
, and
Regitnig
,
P.
, 2004, “
Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
5
), pp.
657
665
.
23.
Sherebrin
,
M. H.
,
Bernans
,
H. A.
, and
Roach
,
M. R.
, 1987, “
Extensibility Changes of Calcified Soft Tissue Strips From Human Aorta
,”
Can. J. Physiol. Pharmacol.
0008-4212,
65
(
9
), pp.
1878
1883
.
You do not currently have access to this content.