Mechanical forces have been shown to be important stimuli for the determination and maintenance of cellular phenotype and function. Many cells are constantly exposed in vivo to cyclic pressure, shear stress, and/or strain. Therefore, the ability to study the effects of these stimuli in vitro is important for understanding how they contribute to both normal and pathologic states. While there exist commercial as well as custom-built devices for the extended application of cyclic strain and shear stress, very few cyclic pressure systems have been reported to apply stimulation longer than 48h. However, pertinent responses of cells to mechanical stimulation may occur later than this. To address this limitation, we have designed a new cyclic hydrostatic pressure system based upon the following design variables: minimal size, stability of pressure and humidity, maximal accessibility, and versatility. Computational fluid dynamics (CFD) was utilized to predict the pressure and potential shear stress within the chamber during the first half of a 1.0Hz duty cycle. To biologically validate our system, we tested the response of bone marrow progenitor cells (BMPCs) from Sprague Dawley rats to a cyclic pressure stimulation of 12080mm Hg, 1.0Hz for 7days. Cellular morphology was measured using Scion Image, and cellular proliferation was measured by counting nuclei in ten fields of view. CFD results showed a constant pressure across the length of the chamber and no shear stress developed at the base of the chamber where the cells are cultured. BMPCs from Sprague Dawley rats demonstrated a significant change in morphology versus controls by reducing their size and adopting a more rounded morphology. Furthermore, these cells increased their proliferation under cyclic hydrostatic pressure. We have demonstrated that our system imparts a single mechanical stimulus of cyclic hydrostatic pressure and is capable of at least 7days of continuous operation without affecting cellular viability. Furthermore, we have shown for the first time that BMPCs respond to cyclic hydrostatic pressure by alterations in morphology and increased proliferation.

1.
Benjamin
,
M.
, and
Hillen
,
B.
, 2003, “
Mechanical Influences on Cells, Tissues and Organs—‘Mechanical Morphogenesis’
,”
Eur. J. Morphol.
0924-3860,
41
(
1
), pp.
3
7
.
2.
Vorp
,
D. A.
,
Maul
,
T. M.
, and
Nieponice
,
A.
, 2005, “
Molecular Aspects of Vascular Tissue Engineering
,”
Front. Biosci.
1093-4715,
10
, pp.
768
789
.
3.
Leung
,
D. Y.
,
Glagov
,
S.
, and
Mathews
,
M. B.
, 1976, “
Cyclic Stretching Stimulates Synthesis of Matrix Components by Arterial Smooth Muscle Cells in Vitro
,”
Science
0036-8075,
191
(
4226
), pp.
475
477
.
4.
Tatsumi
,
R.
,
Sheehan
,
S. M.
,
Iwasaki
,
H.
,
Hattori
,
A.
, and
Allen
,
R. E.
, 2001, “
Mechanical Stretch Induces Activation of Skeletal Muscle Satellite Cells in Vitro
,”
Exp. Cell Res.
0014-4827,
267
(
1
), pp.
107
114
.
5.
Banes
,
A. J.
,
Lee
,
G.
,
Graff
,
R.
,
Otey
,
C.
,
Archambault
,
J.
,
Tsuzaki
,
M.
,
Elfervig
,
M.
, and
Qi
,
J.
, 2001, “
Mechanical Forces and Signaling in Connective Tissue Cells: Cellular Mechanisms of Detection, Transduction, and Responses to Mechanical Deformation
,”
Curr. Opin. Orthop.
,
12
(
5
), pp.
389
396
.
6.
Hamilton
,
D. W.
,
Maul
,
T. M.
, and
Vorp
,
D. A.
, 2004, “
Characterization of the Response of Bone Marrow Derived Progenitor Cells to Cyclic Strain: Implications for Vascular Tissue Engineering Applications
,”
Tissue Eng.
1076-3279,
10
(
3/4
), pp.
361
370
.
7.
Yoshikawa
,
T.
,
Peel
,
S. A.
,
Gladstone
,
J. R.
, and
Davies
,
J. E.
, 1997, “
Biochemical Analysis of the Response in Rat Bone Marrow Cell Cultures to Mechanical Stimulation
,”
Biomed. Mater. Eng.
0959-2989,
7
(
6
), pp.
369
377
.
8.
Nagatomi
,
J.
,
Arulanandam
,
B. P.
,
Metzger
,
D. W.
,
Meunier
,
A.
, and
Bizios
,
R.
, 2002, “
Effects of Cyclic Pressure on Bone Marrow Cell Cultures
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
3
), pp.
308
314
.
9.
Pugin
,
J.
,
Dunn
,
I.
,
Jolliet
,
P.
,
Tassaux
,
D.
,
Magnenat
,
J. L.
,
Nicod
,
L. P.
, and
Chevrolet
,
J. C.
, 1998, “
Activation of Human Macrophages by Mechanical Ventilation in Vitro
,”
Am. J. Physiol.
0002-9513,
275
(6 Pt. 1), pp.
L1040
1050
.
10.
Banes
,
A. J.
,
Link
,
G. W.
,
Gilbert
,
J. W.
,
Tran Son Tay
,
R.
, and
Monbureau
,
O.
, 1990, “
Culturing Cells in a Mechanically Active Environment
,”
Am. Biotechnol. Lab
0749-3223,
8
(
7
), pp.
12
22
.
11.
Blackman
,
B. R.
,
Barbee
,
K. A.
, and
Thibault
,
L. E.
, 2000, “
In Vitro Cell Shearing Device to Investigate the Dynamic Response of Cells in a Controlled Hydrodynamic Environment
,”
Ann. Biomed. Eng.
0090-6964,
28
(
4
), pp.
363
372
.
12.
Frangos
,
J. A.
,
Eskin
,
S. G.
,
Mcintire
,
L. V.
, and
Ives
,
C. L.
, 1985, “
Flow Effects on Prostacyclin Production by Cultured Human Endothelial Cells
,”
Science
0036-8075,
227
(
4693
), pp.
1477
1479
.
13.
Chiu
,
J.-J.
,
Chen
,
L.-J.
,
Chen
,
C.-N.
,
Lee
,
P.-L.
, and
Lee
,
C.-I.
, 2004, “
A Model for Studying the Effect of Shear Stress on Interactions between Vascular Endothelial Cells and Smooth Muscle Cells
,”
J. Biomech.
0021-9290,
37
(
4
), pp.
531
539
.
14.
Archambault
,
J. M.
,
Elfervig-Wall
,
M. K.
,
Tsuzaki
,
M.
,
Herzog
,
W.
, and
Banes
,
A. J.
, 2002, “
Rabbit Tendon Cells Produce Mmp-3 in Response to Fluid Flow without Significant Calcium Transients
,”
J. Biomech.
0021-9290,
35
(
3
), pp.
303
309
.
15.
Dobrin
,
P. B.
, 1994, “
Mechanical Factors Associated with the Development of Intimal Hyperplasia with Respect to Vascular Grafts
,”
Intimal Hyperplasia
,
P. B.
Dobrin
, ed.,
Landes
,
Georgetown
, pp.
85
104
.
16.
Watase
,
M.
,
Awolesi
,
M. A.
,
Ricotta
,
J.
, and
Sumpio
,
B. E.
, 1997, “
Effect of Pressure on Cultured Smooth Muscle Cells
,”
Life Sci.
0024-3205,
61
(
10
), pp.
987
996
.
17.
Parkkinen
,
J. J.
,
Lammi
,
M. J.
,
Inkinen
,
R.
,
Jortikka
,
M.
,
Tammi
,
M.
,
Virtanen
,
I.
, and
Helminen
,
H. J.
, 1995, “
Influence of Short-Term Hydrostatic Pressure on Organization of Stress Fibers in Cultured Chondrocytes
,”
J. Orthop. Res.
0736-0266,
13
(
4
), pp.
495
502
.
18.
Hasel
,
C.
,
Durr
,
S.
,
Bruderlein
,
S.
,
Melzner
,
I.
, and
Moller
,
P.
, 2002, “
A Cell-Culture System for Long-Term Maintenance of Elevated Hydrostatic Pressure with the Option of Additional Tension
,”
J. Biomech.
0021-9290,
35
(
5
), pp.
579
584
.
19.
Sumpio
,
B. E.
,
Widmann
,
M. D.
,
Ricotta
,
J.
,
Awolesi
,
M. A.
, and
Watase
,
M.
, 1994, “
Increased Ambient Pressure Stimulates Proliferation and Morphologic Changes in Cultured Endothelial Cells
,”
J. Cell Physiol.
0021-9541,
158
(
1
), pp.
133
139
.
20.
Williams
,
R.
,
Rankin
,
N.
,
Smith
,
T.
,
Galler
,
D.
, and
Seakins
,
P.
, 1996, “
Relationship between the Humidity and Temperature of Inspired Gas and the Function of the Airway Mucosa
,”
Crit. Care Med.
0090-3493,
24
(
11
), pp.
1920
1929
.
21.
CFDRC Research Corporation
; 2002 CFD-ACE(U) Modules. Huntsville, AL, 15-1:25.
22.
Kute
,
S. M.
, and
Vorp
,
D. A.
, 2001, “
The Effect of Proximal Artery Flow on the Hemodynamics at the Distal Anastomosis of a Vascular Bypass Graft: Computational Study
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
3
), pp.
277
283
.
23.
Billecocq
,
A.
,
Emanuel
,
J. R.
,
Levenson
,
R.
, and
Baron
,
R.
, 1990, “
1 Alpha,25-Dihydroxyvitamin D3 Regulates the Expression of Carbonic Anhydrase II in Nonerythroid Avian Bone Marrow Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
87
(
16
), pp.
6470
6474
.
24.
Nave
,
C. R.
, and
Nave
,
B. C.
, 1985,
Physics for the Health Sciences
,
Saunders
,
Philadelphia
.
25.
Hamilton
,
D. W.
,
Riehle
,
M. O.
,
Rappuoli
,
R.
,
Monaghan
,
W.
,
Barbucci
,
R.
, and
Curtis
,
A. S.
, 2005, “
The Response of Primary Articular Chondrocytes to Micrometric Surface Topography and Sulphated Hyaluronic Acid-Based Matrices
,”
Cell Biol. Int.
1065-6995,
29
(
8
), pp.
605
615
.
26.
Hamilton
,
D. W.
,
Riehle
,
M. O.
,
Monaghan
,
W.
, and
Curtis
,
A. S.
, 2005, “
Articular Chondrocyte Passage Number: Influence on Adhesion, Migration, Cytoskeletal Organisation and Phenotype in Response to Nano- and Micro-Metric Topography
,”
Cell Biol. Int.
1065-6995,
29
(
6
), pp.
408
421
.
27.
Kataoka
,
N.
,
Ujita
,
S.
, and
Sato
,
M.
, 1998, “
Effect of Flow Direction on the Morphological Responses of Cultured Bovine Aortic Endothelial Cells
,”
Med. Biol. Eng. Comput.
0140-0118,
36
(
1
), pp.
122
128
.
28.
Whaley
,
L.
, and
Wong
,
D.
, 1999,
Nursing Care of Infants and Children
,
Mosby
,
St. Louis
.
29.
Angele
,
P.
,
Yoo
,
J. U.
,
Smith
,
C.
,
Mansour
,
J.
,
Jepsen
,
K. J.
,
Nerlich
,
M.
, and
Johnstone
,
B.
, 2003, “
Cyclic Hydrostatic Pressure Enhances the Chondrogenic Phenotype of Human Mesenchymal Progenitor Cells Differentiated in Vitro
,”
J. Orthop. Res.
0736-0266,
21
(
3
), pp.
451
457
.
30.
Rubin
,
J.
,
Biskobing
,
D.
,
Fan
,
X.
,
Rubin
,
C.
,
Mcleod
,
K.
, and
Taylor
,
W. R.
, 1997, “
Pressure Regulates Osteoclast Formation and Mcsf Expression in Marrow Culture
,”
J. Cell Physiol.
0021-9541,
170
(
1
), pp.
81
87
.
You do not currently have access to this content.