Cartilage is a charged hydrated fibrous tissue exhibiting a high degree of tension-compression nonlinearity (i.e., tissue anisotropy). The effect of tension-compression nonlinearity on solute transport has not been investigated in cartilaginous tissue under dynamic loading conditions. In this study, a new model was developed based on the mechano-electrochemical mixture model [Yao and Gu, 2007, J. Biomech. Model Mechanobiol., 6, pp. 63–72, Lai et al., 1991, J. Biomech. Eng., 113, pp. 245–258], and conewise linear elasticity model [Soltz and Ateshian, 2000, J. Biomech. Eng., 122, pp. 576–586;Curnier et al., 1995, J. Elasticity, 37, pp. 1–38]. The solute desorption in cartilage under unconfined dynamic compression was investigated numerically using this new model. Analyses and results demonstrated that a high degree of tissue tension-compression nonlinearity could enhance the transport of large solutes considerably in the cartilage sample under dynamic unconfined compression, whereas it had little effect on the transport of small solutes (at 5% dynamic strain level). The loading-induced convection is an important mechanism for enhancing the transport of large solutes in the cartilage sample with tension-compression nonlinearity. The dynamic compression also promoted diffusion of large solutes in both tissues with and without tension-compression nonlinearity. These findings provide a new insight into the mechanisms of solute transport in hydrated, fibrous soft tissues.

1.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
, pp.
73
84
.
2.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
, 1998, “
Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression
,”
J. Biomech.
0021-9290,
31
(
10
), pp.
927
934
.
3.
Ohshima
,
H.
, and
Urban
,
J. P.
, 1992, “
The Effect of Lactate and pH on Proteoglycan and Protein Synthesis Rates in the Intervertebral Disc
,”
Spine
0362-2436,
17
(
9
), pp.
1079
1082
.
4.
Ysart
,
G. E.
, and
Mason
,
R. M.
, 1994, “
Responses of Articular Cartilage Explant Cultures to Different Oxygen Tensions
,”
Biochim. Biophys. Acta
0006-3002,
1221
(
1
), pp.
15
20
.
5.
Ishihara
,
H.
, and
Urban
,
J. P.
, 1999, “
Effects of Low Oxygen Concentrations and Metabolic Inhibitors on Proteoglycan and Protein Synthesis Rates in the Intervertebral Disc
,”
J. Orthop. Res.
0736-0266,
17
(
6
), pp.
829
835
.
6.
Grimshaw
,
M. J.
, and
Mason
,
R. M.
, 2000, “
Bovine Articular Chondrocyte Function In Vitro Depends Upon Oxygen Tension
,”
Osteoarthritis Cartilage
1063-4584,
8
(
5
), pp.
386
392
.
7.
Horner
,
H. A.
, and
Urban
,
J. P.
, 2001, “
2001 Volvo Award Winner in Basic Science Studies: Effect of Nutrient Supply on the Viability of Cells From the Nucleus Pulposus of the Intervertebral Disc
,”
Spine
0362-2436,
26
(
23
), pp.
2543
2549
.
8.
Razaq
,
S.
,
Wilkins
,
R. J.
, and
Urban
,
J. P.
, 2003, “
The Effect of Extracellular pH on Matrix Turnover by Cells of the Bovine Nucleus Pulposus
,”
Eur. Spine J.
0940-6719,
12
(
4
), pp.
341
349
.
9.
Boos
,
N.
,
Weissbach
,
S.
,
Rohrbach
,
H.
,
Weiler
,
C.
,
Spratt
,
K. F.
, and
Nerlich
,
A. G.
, 2002, “
Classification of Age-Related Changes in Lumbar Intervertebral Discs: 2002 Volvo Award in Basic Science
,”
Spine
0362-2436,
27
(
23
), pp.
2631
2644
.
10.
Nachemson
,
A.
,
Lewin
,
T.
,
Maroudas
,
A.
, and
Freeman
,
M. A.
, 1970, “
In Vitro Diffusion of Dye Through the End-Plates and the Annulus Fibrosus of Human Lumbar Intervertebral Discs
,”
Acta Orthop. Scand.
0001-6470,
41
(
6
), pp.
589
607
.
11.
Urban
,
J. P.
,
Holm
,
S.
, and
Maroudas
,
A.
, 1978, “
Diffusion of Small Solutes Into the Intervertebral Disc: As In Vivo Study
,”
Biorheology
0006-355X,
15
(
3–4
), pp.
203
221
.
12.
Torzilli
,
P. A.
,
Adams
,
T. C.
, and
Mis
,
R. J.
, 1987, “
Transient Solute Diffusion in Articular Cartilage
,”
J. Biomech.
0021-9290,
20
(
2
), pp.
203
214
.
13.
Burstein
,
D.
,
Gray
,
M. L.
,
Hartman
,
A. L.
,
Gipe
,
R.
, and
Foy
,
B. D.
, 1993, “
Diffusion of Small Solutes in Cartilage as Measured by Nuclear Magnetic Resonance (NMR) Spectroscopy and Imaging
,”
J. Orthop. Res.
0736-0266,
11
(
4
), pp.
465
478
.
14.
Quinn
,
T. M.
,
Kocian
,
P.
, and
Meister
,
J. J.
, 2000, “
Static Compression Is Associated With Decreased Diffusivity of Dextrans in Cartilage Explants
,”
Arch. Biochem. Biophys.
0003-9861,
384
(
2
), pp.
327
334
.
15.
Quinn
,
T. M.
,
Morel
,
V.
, and
Meister
,
J. J.
, 2001, “
Static Compression of Articular Cartilage Can Reduce Solute Diffusivity and Partitioning: Implications for the Chondrocyte Biological Response
,”
J. Biomech.
0021-9290,
34
(
11
), pp.
1463
1469
.
16.
Quinn
,
T. M.
,
Studer
,
C.
,
Grodzinsky
,
A. J.
, and
Meister
,
J. J.
, 2002, “
Preservation and Analysis of Nonequilibrium Solute Concentration Distributions Within Mechanically Compressed Cartilage Explants
,”
J. Biochem. Biophys. Methods
0165-022X,
52
(
2
), pp.
83
95
.
17.
Leddy
,
H. A.
, and
Guilak
,
F.
, 2003, “
Site-Specific Molecular Diffusion in Articular Cartilage Measured Using Fluorescence Recovery After Photobleaching
,”
Ann. Biomed. Eng.
0090-6964,
31
(
7
), pp.
753
760
.
18.
Nimer
,
E.
,
Schneiderman
,
R.
, and
Maroudas
,
A.
, 2003, “
Diffusion and Partition of Solutes in Cartilage Under Static Load
,”
Biophys. Chem.
0301-4622,
106
(
2
), pp.
125
146
.
19.
O’Hara
,
B. P.
,
Urban
,
J. P.
, and
Maroudas
,
A.
, 1990, “
Influence of Cyclic Loading on the Nutrition of Articular Cartilage
,”
Ann. Rheum. Dis.
0003-4967,
49
(
7
), pp.
536
539
.
20.
Evans
,
R. C.
, and
Quinn
,
T. M.
, 2006, “
Solute Convection in Dynamically Compressed Cartilage
,”
J. Biomech.
0021-9290,
39
(
6
), pp.
1048
1055
.
21.
Evans
,
R. C.
, and
Quinn
,
T. M.
, 2006, “
Dynamic Compression Augments Interstitial Transport of aGlucose-Like Solute in Articular Cartilage
,”
Biophys. J.
0006-3495,
91
(
4
), pp.
1541
1547
.
22.
Garcia
,
A. M.
,
Frank
,
E. H.
,
Grimshaw
,
P. E.
, and
Grodzinsky
,
A. J.
, 1996, “
Contributions of Fluid Convection and Electrical Migration to Transport in Cartilage: Relevance to Loading
,”
Arch. Biochem. Biophys.
0003-9861,
333
(
2
), pp.
317
325
.
23.
Bonassar
,
L. J.
,
Grodzinsky
,
A. J.
,
Srinivasan
,
A.
,
Davila
,
S. G.
, and
Trippel
,
S. B.
, 2000, “
Mechanical and Physicochemical Regulation of the Action of Insulin-Like Growth Factor-I on Articular Cartilage
,”
Arch. Biochem. Biophys.
0003-9861,
379
(
1
), pp.
57
63
.
24.
Urban
,
J. P.
,
Holm
,
S.
,
Maroudas
,
A.
, and
Nachemson
,
A.
, 1982, “
Nutrition of the Intervertebral Disc: Effect of Fluid Flow on Solute Transport
,”
Clin. Orthop. Relat. Res.
0009-921X,
170
, pp.
296
302
.
25.
Mauck
,
R. L.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2003, “
Modeling of Neutral Solute Transport in aDynamically Loaded Porous Permeable Gel: Implications for Articular Cartilage Biosynthesis and Tissue Engineering
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
5
), pp.
602
614
.
26.
Yao
,
H.
, and
Gu
,
W. Y.
, 2004, “
Physical Signals and Solute Transport in Cartilage Under Dynamic Unconfined Compression: Finite Element Analysis
,”
Ann. Biomed. Eng.
0090-6964,
32
(
3
), pp.
380
390
.
27.
Ferguson
,
S. J.
,
Ito
,
K.
, and
Nolte
,
L. P.
, 2004, “
Fluid Flow and Convective Transport of Solutes Within the Intervertebral Disc
,”
J. Biomech.
0021-9290,
37
(
2
), pp.
213
221
.
28.
Grodzinsky
,
A. J.
, 1983, “
Electromechanical and Physicochemical Properties of Connective Tissue
,”
Crit. Rev. Biomed. Eng.
0278-940X,
9
(
2
), pp.
133
199
.
29.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
3
), pp.
245
258
.
30.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1998, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-Electrolytes: Passive Transport and Swelling Behaviors
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
2
), pp.
169
180
.
31.
Huang
,
C. Y.
,
Stankiewicz
,
A.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
, 2005, “
Anisotropy, Inhomogeneity, Tension-Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation
,”
J. Biomech.
0021-9290,
38
(
4
), pp.
799
809
.
32.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1998, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
4
), pp.
491
496
.
33.
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 1999, “
A Fibril-Network Reinforced Model of Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
3
), pp.
340
347
.
34.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
, 2000, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
6
), pp.
576
586
.
35.
Huang
,
C.-Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
, 2001, “
The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
5
), pp.
410
417
.
36.
Huang
,
C.-Y.
,
Soltz
,
M. A.
,
Kopacz
,
M.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
, 2003, “
Experimental Verification of the Role of Intrinsic Matrix Viscoelasticity and Tension-Compression Nonlinearity in the Biphasic Response of Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
1
), pp.
84
93
.
37.
Yao
,
H.
, and
Gu
,
W. Y.
, 2007, “
Convection and Diffusion in Charged Hydrated Soft Tissues: A Mixture Theory Approach
,”
J. Biomech. Model Mechanobiol.
,
6
(
1-2
), pp.
63
72
.
38.
Sun
,
D. N.
,
Gu
,
W. Y.
,
Guo
,
X. E.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1999, “
A Mixed Finite Element Formulation of Triphasic Mechano-Electrochemical Theory for Charged, Hydrated Biological Soft Tissues
,”
Int. J. Numer. Methods Eng.
0029-5981,
45
, pp.
1375
1402
.
39.
Curnier
,
A.
,
He
,
Q.-C.
, and
Zysset
,
P.
, 1995, “
Conewise Linear Elastic Materials
,”
J. Elast.
0374-3535,
37
, pp.
1
38
.
40.
Ateshian
,
G. A.
,
Chahine
,
N. O.
,
Basalo
,
I. M.
, and
Hung
,
C. T.
, 2004, “
The Correspondence Between Equilibrium Biphasic and Triphasic Material Properties in Mixture Models of Articular Cartilage
,”
J. Biomech.
0021-9290,
37
(
3
), pp.
391
400
.
41.
Lai
,
W. M.
, and
Mow
,
V. C.
, 1980, “
Drag-Induced Compression of Articular Cartilage During a Permeation Experiment
,”
Biorheology
0006-355X,
17
(
1–2
), pp.
111
123
.
42.
Gu
,
W. Y.
,
Yao
,
H.
,
Huang
,
C.-Y.
, and
Cheung
,
H. S.
, 2003, “
New Insight Into Deformation-Dependent Hydraulic Permeability of Gels and Cartilage, and Dynamic Behavior of Agarose Gels in Confined Compression
,”
J. Biomech.
0021-9290,
36
(
4
), pp.
593
598
.
43.
Holmes
,
M. H.
, and
Mow
,
V. C.
, 1990, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
0021-9290,
23
(
11
), pp.
1145
1156
.
44.
Gu
,
W. Y.
,
Yao
,
H.
,
Vega
,
A. L.
, and
Flagler
,
D.
, 2004, “
Diffusivity of Ions in Agarose Gels and Intervertebral Disc: Effect of Porosity
,”
Ann. Biomed. Eng.
0090-6964,
32
(
12
), pp.
1710
1717
.
45.
Sun
,
D. N.
,
Guo
,
X. E.
,
Likhitpanichkul
,
M.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 2004, “
The Influence of the Fixed Negative Charges on Mechanical and Electrical Behaviors of Articular Cartilage Under Unconfined Compression
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
1
), pp.
6
16
.
46.
Mow
,
V. C.
,
Sun
,
D. N.
,
Guo
,
X. E.
,
Likhitpanichkul
,
M.
, and
Lai
,
W. M.
, 2002, “
Fixed Negative Charges Modulate Mechanical Behavior and Electrical Signals in Articular Cartilage Under Unconfined Compression—A Triphasic Paradigm
,”
Porous Media Theory, Experiments and Numerical Application
,
W.
Ehlers
and
J.
Bluhm
, eds.,
Springer
,
Berlin
, pp.
227
247
.
You do not currently have access to this content.