The effect of blood viscosity on oxygen transport in a stenosed coronary artery during the postangioplasty scenario is studied. In addition to incorporating varying blood viscosity using different hematocrit (Hct) concentrations, oxygen consumption by the avascular wall and its supply from vasa vasorum, nonlinear oxygen binding capacity of the hemoglobin, and basal to hyperemic flow rate changes are included in the calculation of oxygen transport in both the lumen and the avascular wall. The results of this study show that oxygen transport in the postangioplasty residual stenosed artery is affected by non-Newtonian shear-thinning property of the blood viscosity having variable Hct concentration. As Hct increases from 25% to 65%, the diminished recirculation zone for the increased Hct causes the commencement of pO2 decrease to shift radially outward by 20% from the center of the artery for the basal flow, but by 10% for the hyperemic flow at the end of the diverging section. Oxygen concentration increases from a minimum value at the core of the recirculation zone to over 90mmHg before the lumen-wall interface at the diverging section for the hyperemic flow, which is attributed to increased shear rate and thinner lumen boundary layer for the hyperemic flow, and below 90mmHg for the basal flow. As Hct increases from 25% to 65%, the average of pO2,min beyond the diverging section drops by 25% for the basal flow, whereas it increases by 15% for the hyperemic flow. Thus, current results with the moderate stenosed artery indicate that reducing Hct might be favorable in terms of increasing O2 flux and pO2,min, in the medial region of the wall for the basal flow, while higher Hct is advantageous for the hyperemic flow beyond the diverging section. The results of this study not only provide significant details of oxygen transport under varying pathophysiologic blood conditions such as unusually high blood viscosity and flow rate, but might also be extended to offer implications for drug therapy related to blood-thinning medication and for blood transfusion and hemorrhage.

1.
Walburn
,
F. J.
, and
Schneck
,
D. J.
, 1976, “
A Constitutive Equation for Whole Human Blood
,”
Biorheology
0006-355X,
13
, pp.
201
210
.
2.
Baskurt
,
O. K.
, and
Meiselman
,
H. J.
, 2003, “
Blood Rheology and Hemodynamics
,”
Semin Thromb Hemost
0094-6176,
29
, pp.
435
450
.
3.
Dintenfass
,
L.
, 1974, “
Blood Rheology as Diagnostic and Predictive Tool in Cardiovascular Diseases
,”
Angiology
0003-3197,
25
, pp.
365
372
.
4.
Letcher
,
R. L.
,
Chien
,
S.
,
Pickering
,
T. G.
, and
Laragh
,
J. H.
, 1983, “
Elevated Blood Viscosity in Patients With Borderline Essential Hypertension
,”
Hypertension
0194-911X,
5
, pp.
757
762
.
5.
Lowe
,
G. D. O.
, 1986, “
Blood Rheology in Arterial Disease
,”
Clin. Sci.
0323-5084,
71
, pp.
137
146
.
6.
Stadler
,
A. A.
,
Zilow
,
E. P.
, and
Linderkamp
,
O.
, 1990, “
Blood Viscosity and Optimal Hematocrit in Narrow Tubes
,”
Biorheology
0006-355X,
27
, pp.
779
788
.
7.
Chien
,
S.
,
Usami
,
S.
,
Dellenback
,
R. J.
, and
Gregersen
,
M. I.
, 1970, “
Shear Dependent Deformation of Erythrocytes in Rheology of Human Blood
,”
Am. J. Phys.
0002-9505,
219
, pp.
136
142
.
8.
Pries
,
A. R.
,
Neuhaus
,
D.
, and
Gaehtgens
,
P.
, 1992, “
Blood Viscosity in Tube Flow: Dependence on Diameter and Hematocrit
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
263
, pp.
H1770
H1778
.
9.
Bogar
,
L.
,
Juricskay
,
I.
,
Kesmarky
,
G.
,
Kenyeres
,
P.
, and
Toth
,
K.
, 2005, “
Erythrocyte Transport Efficacy of Human Blood: A Rheological Point of View
,”
Eur. J. Clin. Invest
0014-2972,
35
, pp.
687
690
.
10.
Jan
,
K. M.
, and
Chien
,
S.
, 1977, “
Effect of Hematocrit Variations on Coronary Hemodynamics and Oxygen Utilization
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
233
, pp.
H106
H113
.
11.
Fry
,
D. L.
, and
Vaishnav
,
R. N.
, 1980, “
Mass Transport in the Arterial Wall
,” in
Basic Hemodynamics and Its Role in Disease Processes
,
D. J.
Patel
and
R. N.
Vaishnav
, eds.,
University Park Press
,
Baltimore, MD
, pp.
425
485
.
12.
Schneiderman
,
G.
,
Goldstick
,
T. K.
, and
Zuckerman
,
L.
, 1974, “Similarity Between the Site of Minimum PO2 and the Site of Initiation of Atherosclerosis,” Proceedings of the Annual Conference of Engineering in Medicine and Biology, 16, p.
283
.
13.
Jurrus
,
E. R.
, and
Weiss
,
H. S.
, 1977, “
In Vitro Oxygen Tensions in the Rabbit Aortic Arch
,”
Atherosclerosis
0021-9150,
28
, pp.
223
232
.
14.
Crawford
,
D. W.
,
Cole
,
M. A.
, and
Back
,
L. H.
, 1983, “
Evidence for the Blood Oxygen Boundary Layer pO2 Gradient (Δ pO2) as a Significant Determinant of Intimal (Pw) and Lowest Medial pO2 (pδn) in the Vivo Dog Femoral Artery
,”
Adv. Exp. Med. Biol.
0065-2598,
159
, pp.
197
209
.
15.
Back
,
L. H.
, 1975, “
Theoretical Investigation of Mass Transport to Arterial Walls in Various Blood Flow Regions. II. Oxygen Transport and Its Relationship to Lipoprotein Accumulation
,”
Math. Biosci.
0025-5564,
27
, pp.
263
285
.
16.
Schneiderman
,
G.
,
Ellis
,
C. G.
, and
Goldstick
,
T. K.
, 1979, “
Mass Transport to Walls of Stenosed Arteries: Variation With Reynolds Number and Blood Flow Separation
,”
J. Biomech.
0021-9290,
12
, pp.
869
877
.
17.
Schneiderman
,
G.
,
Mockros
,
L. F.
, and
Goldstick
,
T. K.
, 1982, “
Effect of Pulsatility on Oxygen Transport to the Human Arterial Wall
,”
J. Biomech.
0021-9290,
15
, pp.
849
858
.
18.
Moore
,
J. A.
, and
Ethier
,
C. R.
, 1997, “
Oxygen Mass Transfer Calculations in Large Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
469
475
.
19.
Vaidya
,
V. S.
,
Back
,
L. H.
, and
Banerjee
,
R. K.
, 2005, “
Coupled Oxygen Transport Analysis in the Avascular Wall of a Post-Angioplasty Coronary Artery Stenosis
,”
Biorheology
0006-355X,
42
, pp.
249
269
.
20.
Wilson
,
R. F.
,
Johnson
,
M. R.
,
Marcus
,
M. L.
,
Alyward
,
P. E. G.
,
Skorton
,
D. J.
,
Collins
,
S.
, and
White
,
C. W.
, 1988, “
The Effect of Coronary Angioplasty on Coronary Flow Reserve
,”
Circulation
0009-7322,
77
, pp.
873
885
.
21.
Zemplenyi
,
T.
,
Crawford
,
D. W.
, and
Cole
,
M. A.
, 1989, “
Adaptation to Arterial Wall Hypoxia Demonstrated in Vivo With Oxygen Microcathodes
,”
Atherosclerosis
0021-9150,
76
, pp.
173
179
.
22.
Back
,
L. H.
, 1976, “
Analysis of Oxygen Transport in the Avascular Region of Arteries
,”
Math. Biosci.
0025-5564,
31
, pp.
285
306
.
23.
Habler
,
O. P.
, and
Messmer
,
K. F. W.
, 1997, “The Physiology of Oxygen Transport,” Transfusion Science, 18, pp. 425–435.
24.
Back
,
L. H.
,
Radbill
,
J. R.
, and
Crawford
,
D. W.
, 1977, “
Analysis of Oxygen Transport from Pulsatile, Viscous Blood Flow to Diseased Coronary Arteries of Man
,”
J. Biomech.
0021-9290,
10
, pp.
763
774
.
25.
Colton
,
C. K.
, and
Drake
,
R. F.
, 1971, “Effect of Boundary Conditions on Oxygen Transport to Blood Flowing in a Tube,” Chemical Engineering Progress Symposium Series, 67, pp. 88–95.
26.
Rappitsch
,
G.
, and
Perktold
,
K.
, 1996, “
Computer Simulation of Convective Diffusion Processes in Large Arteries
,”
J. Biomech.
0021-9290,
29
, pp.
207
215
.
27.
Cho
,
Y. I.
, and
Kensey
,
K. R.
, 1991, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel: Part I, Steady Flows
,”
Biorheology
0006-355X,
28
, pp.
241
262
.
28.
Chien
,
S.
, 1975, “
Biophysical Behavior of Red Cells in Suspensions
,” in
The Red Blood Cell
,
D. M. N.
Surgenor
, ed.,
Academic
,
New York
, Vol.
II
, pp.
1031
1133
.
29.
Baker
,
A. J.
, 1983,
Finite Element Computational Fluid Mechanics
,
Hemisphere
,
New York
, pp.
153
230
.
30.
De Venuto
,
F.
,
Busse
,
K. R.
, and
Zegna
,
A. I.
, 1981, “
Viscosity of Human Blood Hemodiluted With Crystalline Hemoglobin Solution
,”
Transfusion (Bethesda, Md.)
0041-1132,
21
, pp.
752
756
.
31.
Most
,
A. S.
,
Ruocco
,
N. A.
, Jr.
, and
Gewirtz
,
H.
, 1986, “
Effect of a Reduction in Blood Viscosity on Maximal Myocardial Oxygen Delivery Distal to a Moderate Coronary Stenosis
,”
Circulation
0009-7322,
74
, pp.
1085
1092
.
32.
Despotis
,
G. J.
,
Gravlee
,
G.
,
Filos
,
K.
, and
Levy
,
J.
, 1999, “
Anticoagulation Monitoring During Cardiac Surgery: A Review of Current and Emerging Techniques
,”
Anesthesiology
0003-3022,
91
, pp.
1122
1151
.
33.
Hill
,
S. E.
,
Gottschalk
,
L. I.
, and
Grichnik
,
K.
, 2002, “
Safety and Preliminary Efficacy of Hemoglobin Raffimer for Patients Undergoing Coronary Artery Bypass Surgery
,”
J. Cardiothorac Vasc. Anesth.
1053-0770,
16
, pp.
695
702
.
34.
Stetter
,
M. N.
,
Baerlocher
,
G. M.
,
Meiselman
,
H. J.
, and
Reinhart
,
W. H.
, 1997, “
Influence of a Recombinant Hemoglobin Solution on Blood Rheology
,”
Transfusion (Bethesda, Md.)
0041-1132,
37
, pp.
1149
1155
.
35.
Ajmani
,
R. S.
, and
Puniyani
,
R. R.
, 1995, “
Hemorheological Changes in Congestive Cardiac Failure
,”
Clin. Hemorheol.
0271-5198,
15
, pp.
347
357
.
You do not currently have access to this content.