Wear of ultrahigh molecular weight polyethylene remains a primary factor limiting the longevity of total knee replacements (TKRs). However, wear testing on a simulator machine is time consuming and expensive, making it impractical for iterative design purposes. The objectives of this paper were first, to evaluate whether a computational model using a wear factor consistent with the TKR material pair can predict accurate TKR damage measured in a simulator machine, and second, to investigate how choice of surface evolution method (fixed or variable step) and material model (linear or nonlinear) affect the prediction. An iterative computational damage model was constructed for a commercial knee implant in an AMTI simulator machine. The damage model combined a dynamic contact model with a surface evolution model to predict how wear plus creep progressively alter tibial insert geometry over multiple simulations. The computational framework was validated by predicting wear in a cylinder-on-plate system for which an analytical solution was derived. The implant damage model was evaluated for 5 million cycles of simulated gait using damage measurements made on the same implant in an AMTI machine. Using a pin-on-plate wear factor for the same material pair as the implant, the model predicted tibial insert wear volume to within 2% error and damage depths and areas to within 18% and 10% error, respectively. Choice of material model had little influence, while inclusion of surface evolution affected damage depth and area but not wear volume predictions. Surface evolution method was important only during the initial cycles, where variable step was needed to capture rapid geometry changes due to the creep. Overall, our results indicate that accurate TKR damage predictions can be made with a computational model using a constant wear factor obtained from pin-on-plate tests for the same material pair, and furthermore, that surface evolution method matters only during the initial “break in” period of the simulation.

1.
Sharkey
,
P. F.
,
Hozack
,
W. J.
,
Rothman
,
R. H.
,
Shastri
,
S.
, and
Jacoby
,
S. M.
, 2002, “
Insall Award Paper. Why are Total Knee Arthroplasties Failing Today?
Clin. Orthop. Relat. Res.
0009-921X,
404
, pp.
7
13
.
2.
Barnett
,
P. I.
,
McEwen
,
H. M.
,
Auger
,
D. D.
,
Stone
,
M. H.
,
Ingham
,
E.
, and
Fisher
,
J.
, 2002, “
Investigation of Wear of Knee Prostheses in a New Displacement/Force-Controlled Simulator
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
216
, pp.
51
61
.
3.
Burgess
,
I. C.
,
Kolar
,
M.
,
Cunningham
,
J. L.
, and
Unsworth
,
A.
, 1997, “
Development of a Six Station Knee Wear Simulator and Preliminary Wear Results
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
211
, pp.
37
47
.
4.
DesJardins
,
J. D.
,
Walker
,
P. S.
,
Haider
,
H.
, and
Perry
,
J.
, 2000, “
The Use of a Force-Controlled Dynamic Knee Simulator to Quantify the Mechanical Performance of Total Knee Replacement Designs During Functional Activity
,”
J. Biomech.
0021-9290,
33
, pp.
1231
1242
.
5.
Muratoglu
,
O. K.
,
Perinchief
,
R. S.
,
Bragdon
,
C. R.
,
O’Connor
,
D. O.
,
Konrad
,
R.
, and
Harris
,
W. H.
, 2003, “
Metrology to Quantify Wear and Creep of Polyethylene Tibial Knee Inserts
,”
Clin. Orthop. Relat. Res.
0009-921X,
410
, pp.
155
164
.
6.
Walker
,
P. S.
,
Blunn
,
G. W.
,
Broome
,
D. R.
,
Perry
,
J.
,
Watkins
,
A.
,
Sathasivam
,
S.
,
Dewar
,
M. E.
, and
Paul
,
J. P.
, 1997, “
A Knee Simulating Machine for Performance Evaluation of Total Knee Replacements
,”
J. Biomech.
0021-9290,
30
, pp.
83
89
.
7.
Fisher
,
J.
,
McEwen
,
H. M.
,
Tipper
,
J. L.
,
Galvin
,
A. L.
,
Ingram
,
J.
,
Kamali
,
A.
,
Stone
,
M. H.
, and
Ingham
,
E.
, 2004, “
Wear, Debris, and Biologic Activity of Cross-Linked Polyethylene in the Knee: Benefits and Potential Concerns
,”
Clin. Orthop. Relat. Res.
0009-921X,
428
, pp.
114
119
.
8.
Zhao
,
D.
,
Sawyer
,
W. G.
, and
Fregly
,
B. J.
, 2006, “
Computational Wear Prediction of UHMWPE in Knee Replacements
,”
J. ASTM Int.
1546-962X,
3
, pp.
45
50
.
9.
Knight
,
L. A.
,
Pal
,
S.
,
Coleman
,
J. C.
,
Bronson
,
F.
,
Haider
,
H.
,
Levine
,
D. L.
,
Taylor
,
M.
, and
Rullkoetter
,
P. J.
, 2007, “
Comparison of Long-Term Numerical and Experimental Total Knee Replacement Wear During Simulated Gait Loading
,”
J. Biomech.
0021-9290,
40
, pp.
1550
1558
.
10.
Rawlinson
,
J. J.
,
Furman
,
B. D.
,
Li
,
S.
,
Wright
,
T. M.
, and
Bartel
,
D. L.
, 2006, “
Retrieval, Experimental, and Computational Assessment of the Performance of Total Knee Replacements
,”
J. Orthop. Res.
0736-0266,
24
, pp.
1384
1394
.
11.
Bei
,
Y.
, and
Fregly
,
B. J.
, 2004, “
Multibody Dynamic Simulation of Knee Contact Mechanics
,”
Med. Eng. Phys.
1350-4533,
26
, pp.
777
789
.
12.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
13.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
, 1991, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
0021-9290,
24
, pp.
1019
1031
.
14.
An
,
K. N.
,
Himeno
,
S.
,
Tsumura
,
H.
,
Kawai
,
T.
, and
Chao
,
E. Y.
, 1990, “
Pressure Distribution on Articular Surfaces: Application to Joint Stability Evaluation
,”
J. Biomech.
0021-9290,
23
, pp.
1013
1020
.
15.
Nuno
,
N.
, and
Ahmed
,
A. M.
, 2001, “
Sagittal Profile of the Femoral Condyles and Its Application to Femorotibial Contact Analysis
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
18
26
.
16.
Archard
,
J. F.
, and
Hirst
,
W.
, 1956, “
The Wear of Metals Under Unlubricated Conditions
,”
Proc. R. Soc. London, Ser. A
1364-5021,
236
, pp.
397
410
.
17.
Lee
,
K. Y.
, and
Pienkowski
,
D.
, 1997, “
Reduction in the Initial Wear of Ultrahigh Molecular Weight Polyethylene After Compressive Creep Deformation
.”
Wear
0043-1648,
203-204
, pp.
375
379
.
18.
Lee
,
K. Y.
, and
Pienkowski
,
D.
, 1998, “
Viscoelastic Recovery of Creep-Deformed Ultra-High Molecular Weight Polyethylene (UHMWPE)
,”
ASTM Spec. Tech. Publ.
0066-0558, STP
1307
, pp.
30
36
.
19.
Lee
,
K. Y.
, and
Pienkowski
,
D.
, 1998, “
Compressive Creep Characteristics of Extruded Ultrahigh-Molecular-Weight Polyethylene
,”
J. Biomed. Mater. Res.
0021-9304,
39
, pp.
261
265
.
20.
Fregly
,
B. J.
,
Sawyer
,
W. G.
,
Harman
,
M. K.
, and
Banks
,
S. A.
, 2005, “
Computational Wear Prediction of a Total Knee Replacement From In Vivo Kinematics
,”
J. Biomech.
0021-9290,
38
, pp.
305
314
.
21.
Kurtz
,
S. M.
,
Jewett
,
C. W.
,
Bergstrom
,
J. S.
,
Foulds
,
J. R.
, and
Edidin
,
A. A.
, 2002, “
Miniature Specimen Shear Punch Test for UHMWPE Used in Total Joint Replacements
,”
Biomaterials
0142-9612,
23
, pp.
1907
1919
.
22.
Bartel
,
D. L.
,
Rawlinson
,
J. J.
,
Burstein
,
A. H.
,
Ranawat
,
C. S.
, and
Flynn
,
W. F.
, Jr.
, 1995, “
Stresses in Polyethylene Components of Contemporary Total Knee Replacements
,”
Clin. Orthop. Relat. Res.
0009-921X,
317
, pp.
76
82
.
23.
Fregly
,
B. J.
,
Bei
,
Y.
, and
Sylvester
,
M. E.
, 2003, “
Experimental Evaluation of an Elastic Foundation Model to Predict Contact Pressures in Knee Replacements
,”
J. Biomech.
0021-9290,
36
, pp.
1659
1668
.
24.
Lancaster
,
J. G.
,
Dowson
,
D.
,
Isaac
,
G. H.
, and
Fisher
,
J.
, 1997, “
The Wear of Ultra-High Molecular Weight Polyethylene Sliding on Metallic and Ceramic Counterfaces Representative of Current Femoral Surfaces in Joint Replacement
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
211
, pp.
17
24
.
25.
Barbour
,
P. S.
,
Barton
,
D. C.
, and
Fisher
,
J.
, 1997, “
The Influence of Stress Conditions on the Wear of UHMWPE for Total Joint Replacements
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
8
, pp.
603
611
.
26.
Saikko
,
V.
, and
Ahlroos
,
T.
, 2000, “
Wear Simulation of UHMWPE for Total Hip Replacement With a Multidirectional Motion Pin-on-Disk Device: Effects of Counterface Material, Contact Area, and Lubricant
,”
J. Biomed. Mater. Res.
0021-9304,
49
, pp.
147
154
.
27.
Endo
,
M. M.
,
Barbour
,
P. S.
,
Barton
,
D. C.
,
Wroblewski
,
B. M.
,
Fisher
,
J.
,
Tipper
,
J. L.
,
Ingham
,
E.
, and
Stone
,
M. H.
, 1999, “
A Comparison of the Wear and Debris Generation of GUR 1120 (Compression Moulded) and GUR 4150HP (Ram Extruded) Ultra High Molecular Weight Polyethylene
,”
Biomed. Mater. Eng.
0959-2989,
9
, pp.
113
124
.
28.
Marrs
,
H.
,
Barton
,
D. C.
,
Jones
,
R. A.
,
Ward
,
I. M.
, and
Fisher
,
J.
, 1999, “
Comparative Wear Under Four Different Tribological Conditions of Acetylene Enhanced Cross-Linked Ultra High Molecular Weight Polyethylene
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
10
, pp.
333
342
.
29.
Hamilton
,
M. A.
,
Sucec
,
M. C.
,
Fregly
,
B. J.
,
Banks
,
S. A.
, and
Sawyer
,
W. G.
, 2005, “
Quantifying Multidirectional Sliding Motions in Total Knee Replacements
,”
J. Tribol.
0742-4787,
127
, pp.
280
286
.
You do not currently have access to this content.