It is well known that atherosclerosis occurs at very specific locations throughout the human vasculature, such as arterial bifurcations and bends, all of which are subjected to low wall shear stress. A key player in the pathology of atherosclerosis is the endothelium, controlling the passage of material to and from the artery wall. Endothelial dysfunction refers to the condition where the normal regulation of processes by the endothelium is diminished. In this paper, the blood flow and transport of the low diffusion coefficient species adenosine triphosphate (ATP) are investigated in a variety of arterial geometries: a bifurcation with varying inner angle, and an artery bend. A mathematical model of endothelial calcium and endothelial nitric oxide synthase cellular dynamics is used to investigate spatial variations in the physiology of the endothelium. This model allows assessment of regions of the artery wall deficient in nitric oxide (NO). The models here aim to determine whether 3D flow fields are important in determining ATP concentration and endothelial function. For ATP transport, the effects of a coronary and carotid wave form on mass transport is investigated for low Womersley number. For the carotid, the Womersley number is then increased to determine whether this is an important factor. The results show that regions of low wall shear stress correspond with regions of impaired endothetial nitric oxide synthase signaling, therefore reduced availability of NO. However, experimental work is required to determine if this level is significant. The results also suggest that bifurcation angle is an important factor and acute angle bifurcations are more susceptible to disease than large angle bifurcations. It has been evidenced that complex 3D flow fields play an important role in determining signaling within endothelial cells. Furthermore, the distribution of ATP in blood is highly dependent on secondary flow features. The models here use ATP concentration simulated under steady conditions. This has been evidenced to reproduce essential features of time-averaged ATP concentration over a cardiac cycle for small Womersley numbers. However, when the Womersley number is increased, some differences are observed. Transient variations are overall insignificant, suggesting that spatial variation is more important than temporal. It has been determined that acute angle bifurcations are potentially more susceptible to atherogenesis and steady-state ATP transport reproduces essential features of time-averaged pulsatile transport for small Womersley number. Larger Womersley numbers appear to be an important factor in time-dependent mass transfer.

1.
Traub
,
O.
, and
Berk
,
B. C.
, 1998, “
Laminar Shear Stress—Mechanisms by Which Endothelial Cells Transduce an Atheroprotective Force
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
18
(
5
), pp.
677
685
.
2.
Naseem
,
K. M.
, 2005, “
The Role of Nitric Oxide in Cardiovascular Diseases
,”
Mol. Aspects Med.
0098-2997,
26
, pp.
33
65
.
3.
Davignon
,
J.
, and
Ganz
,
P.
, 2004, “
Role of Endothelial Dysfunction in Atherosclerosis
,”
Circulation
0009-7322,
109
, pp.
III
-27–III-
32
.
4.
Davies
,
P. F.
, 2000, “
Spatial Hemodynamics, the Endothelium, and Focal Atherogenesis—A Cell Cycle link?
,”
Circ. Res.
0009-7330,
86
(
2
), pp.
114
116
.
5.
Dull
,
R. O.
, and
Davies
,
P. F.
, 1991, “
Flow Modulation of Agonist ATP-Response Ca2+ Coupling in Vascular Endothelial-cells
,”
Am. J. Physiol.
0002-9513,
261
(
1
), pp.
H149
H154
.
6.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
, 1999, “
Hemodynamic Shear Stress and its Role in Atherosclerosis
,”
J. Am. Med. Assoc.
0098-7484,
21
(
282
), pp.
2035
2042
.
7.
Asakura
,
T.
, and
Karino
,
T.
, 1990, “
Flow Patterns and Spatial-Distribution of Atherosclerotic Lesions in Human Coronary-Arteries
,”
Circ. Res.
0009-7330,
66
(
4
), pp.
1045
1066
.
8.
Kwan
,
H.
,
Leung
,
P.
,
Huang
,
Y.
, and
Yao
,
X.
, 2003, “
Store Depletion Sensitizes Flow-induced Ca2+ Influx
,”
Circ. Res.
0009-7330,
92
, pp.
286
292
.
9.
Dimmeler
,
S.
,
Fleming
,
I.
,
Fisslthaler
,
B.
,
Hermann
,
C.
,
Busse
,
R.
, and
Zeiher
,
A. M.
, 1999, “
Activation of Nitric Oxide Synthase in Endothelial Cells by Akt-Dependent Phosphorylation
,”
Nature (London)
0028-0836,
399
, pp.
601
605
.
10.
Barbato
,
J. E.
, and
Tzeng
,
E.
, 2004, “
Nitric Oxide and Arterial Disease
,”
Vasc. Surg.
0042-2835,
40
, pp.
187
193
.
11.
Shaul
,
P.
, 2003, “
Endothelial Nitric Oxide Synthase, Caveolae and the Development of Atherosclerosis
,”
J. Physiol. (London)
0022-3751,
547
, pp.
21
33
.
12.
Lin
,
S.
,
Fagan
,
K. A.
,
Li
,
K. X.
,
Shaul
,
P. W.
,
Cooper
,
D. M. F.
, and
Rodman
,
D. M.
, 2000, “
Sustained Endothelial Nitric-oxide Synthase Activation Requires Capcitive Ca2+ Entry
,”
J. Biol. Chem.
0021-9258,
275
, pp.
17979
17985
.
13.
Plank
,
M. J.
,
Wall
,
D. J. N.
, and
David
,
T.
, 2006, “
Atherosclerosis and Calcium Signalling in Endothelial Cells
,”
Prog. Biophys. Mol. Biol.
0079-6107,
91
, pp.
287
313
.
14.
David
,
T.
, 2003, “
Wall Shear Stress Modulation of ATP/ADP Concentration at the Endothelium
,”
Ann. Biomed. Eng.
0090-6964,
31
(
10
), pp.
1231
1237
.
15.
John
,
K.
, and
Barakat
,
A. I.
, 2001, “
Modulation of ATP/ADP Concentration at the Endothelial Surface by Shear Stress: Effect of Flow-induced ATP Release
,”
Ann. Biomed. Eng.
0090-6964,
29
(
9
), pp.
740
751
.
16.
Plank
,
M. J.
,
Comerford
,
A.
,
David
,
T.
, and
Wall
,
D. J. N.
, 2006, “
Concentration of Blood-Borne Agonists at the Endothelium
,”
Proc. R. Soc. London, Ser. A
1364-5021,
462
, pp.
671
688
.
17.
Shen
,
J.
,
Gimbrone
,
M. A.
,
Luscinskas
,
F. W.
, and
Dewey
,
C. F.
, 1993, “
Regulation of Adenine-nucleotide Concentration at Endothelium Fluid Interface by Viscous Shear-flow
,”
Biophys. J.
0006-3495,
64
(
4
), pp.
1323
1330
.
18.
Kaazempur-Mofrad
,
M. R.
,
Wada
,
S.
,
Myers
,
J. G.
, and
Ethier
,
C. R.
, 2005, “
Mass Transport and Fluid Flow in Stenotic Arteries: Axisymmetric and Asymmetric Models
,”
Heat Mass Transfer
0947-7411,
48
, pp.
4510
4517
.
19.
Rappitsch
,
G.
, and
Perktold
,
K.
, 1996, “
Computer Simulation of Convective Diffusive Processes in Larger Arteries
,”
J. Biomech.
0021-9290,
29
, pp.
207
215
.
20.
Wada
,
S.
, and
Karino
,
T.
, 2002, “
Theoretical Prediction of Low-density Lipoprotiens Concentration at the Luminal Surface of an Artery With a Multiple Bend
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
778
791
.
21.
Comerford
,
A.
,
David
,
T.
, and
Plank
,
M.
, 2006, “
Effects of Arterial Bifurcation Geometry on Nucleotide Concentration at the Endothelium
,”
Ann. Biomed. Eng.
0090-6964,
34
, pp.
605
617
.
22.
Zamir
,
M.
, 2000,
The Physics of Pulsatile Flow
,
Springer
,
New York
.
23.
Bodin
,
P.
, and
Burnstock
,
G.
, 2001, “
Evidence That Release of Adenosine Triphosphate From Endothelial Cells During Increased Shear Stress is Vesicular
,”
J. Cardiovasc. Pharmacol.
0160-2446,
38
, pp.
900
908
.
24.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E.
, 1960,
Transport Phenomena
,
Wiley
New York
.
25.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and low Oscillating Shear Stress
,”
Arterioscler. Thromb. Vasc. Biol.
,
5
, pp.
293
302
.
26.
Matsuo
,
S.
,
Tsuruta
,
M.
,
Hayano
,
M.
,
Imamura
,
Y.
,
Eguchi
,
Y.
,
Tokushima
,
T.
, and
Tsuji
,
S.
, 1988, “
Phasic Coronary Artery Flow Velocity Determined by Doppler Flowmeter Catheter in Aortic Stenosis and Aortic Regurgitation
,”
Am. J. Cardiol.
0002-9149,
62
, pp.
917
922
.
27.
Wiesner
,
T.
,
Berk
,
B.
, and
Nerem
,
R.
, 1996, “
A Mathmatical Model of Cytosolic Calcium Dynamics in Human Umbilical Vein Endothelial Cells
,”
Am. J. Physiol.
0002-9513,
270
, pp.
C1556
C1569
.
28.
Wiesner
,
T.
,
Berk
,
B.
, and
Nerem
,
R.
, 1997, “
A Mathematical Model of Cytosolic-free Calcium Response in Endothelial Cells to Fluid Shear Stress
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
94
, pp.
3726
3731
.
29.
Putney
,
J. W.
,
Broad
,
L. M.
,
Braun
,
F.
,
Lievremont
,
J.
, and
Bird
,
G. J.
, 2001, “
Mechanisms of Capacitative Calcium Entry
,”
J. Cell. Sci.
0021-9533,
114
, pp.
2223
2229
.
30.
Kwan
,
H.
,
Huang
,
Y.
, and
Yao
,
X.
, 2000, “
Store-Operated Calcium Entry in Vascular Endothelial Cells is Inhibited by cgmp via a Protein Kinase g-Dependent Mechanism
,”
J. Biol. Chem.
0021-9258,
275
, pp.
6758
6763
.
31.
Cheng
,
C.
,
van Haperen
,
R.
,
de Waard
,
M.
,
van Damme
,
L. C. A.
,
Tempel
,
D.
,
Hanemaaijer
,
L.
,
van Cappellen
,
F. W. A.
,
Bos
,
J.
,
Duncker
,
C. J.
,
van der Steen
,
A. F. W.
,
de Crom
,
R.
, and
Krams
,
R.
, 2005, “
Shear Stress Affects the Intracellular Distribution of Enos: Direct Demonstration by a Novel In Vivo Technique
,”
Blood
0006-4971,
106
, pp.
3691
3698
.
32.
Tobak
,
M.
, and
Peake
,
D. J.
, 1982, “
Topology of Three-Dimensional Separated Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
14
, pp.
61
85
.
33.
Yamamoto
,
K.
,
Sokabe
,
T.
,
Matsumoto
,
T.
,
Yoshimura
,
K.
,
Shibata
,
M.
,
Ohura
,
N.
,
Fukuda
,
T.
,
Sato
,
T.
,
Sekine
,
K.
,
Kato
,
S.
,
Isshiki
,
M.
,
Fujita
,
T.
,
Kobayashi
,
M.
,
Kawamura
,
K.
, and
Masuda
,
H.
, 2006, “
Impaired Flow-dependent Control of Vascular Tone and Remodeling in p2×4-Deficient Mice
,”
Nat. Med.
1078-8956,
12
, pp.
133
137
.
34.
Gimbrone
,
M. A.
, 1999 “
Vascular Endothelium, Haemodynamic Forces and Atherogenesis
,”
Am. J. Pathol.
0002-9440,
155
,
1
5
.
35.
Friedman
,
M.
,
Brinkman
,
A.
,
Qin
,
J.
, and
Seed
,
W.
, 1993, “
Relation Between Coronary Artery Geometry and the Distribution of Early Sudanophilic Lesions
,”
Atherosclerosis
0021-9150,
98
, pp.
193
199
.
36.
Sharp
,
W.
,
Donovan
,
D.
,
Teague
,
P.
, and
Mosteller
,
R.
, 1982, “
Arterial Occlusive Disease: A Function of Vessel Bifurcation Angle
,”
Surgery (St. Louis)
0039-6060,
91
, pp.
680
685
.
37.
Perktold
,
K.
,
Peter
,
R. O.
,
Resch
,
M.
, and
Langs
,
G.
, 1991, “
Pulsatile Non-Newtonain Blood Flow in Three-dimensional Carotid Bifurcation Models: A Numerical Study of Flow Phenomena Under Different Bifurcation Angles
,”
J. Biomed. Eng.
0141-5425,
13
, pp.
507
515
.
38.
Sitzer
,
M.
,
Puac
,
D.
,
Buehler
,
A.
,
Steckel
,
D. A.
,
von Kegler
,
S.
,
Markus
,
H. S.
, and
Steinmetz
,
H.
, 2003, “
Internal Carotid Artery Angle of Origin: A Novel Risk Factor for Early Carotid Atherosclerosis
,”
Stroke
0039-2499,
34
, pp.
950
955
.
39.
Zand
,
T.
,
Hoffman
,
A. H.
,
Savilonis
,
B. J.
,
Underwood
,
J. M.
,
Nunnari
,
J. J.
,
Majno
,
G.
, and
Joris
,
I.
, 1999, “
Lipid Deposition in Rat Aortas With Intraluminal Hemispherical Plug Stenosis
,”
Am. J. Pathol.
0002-9440,
55
, pp.
85
92
.
40.
Shen
,
J.
,
Luscinskas
,
F. W.
,
Connolly
,
A.
,
Dewey
,
C. F.
, and
Gimbrone
,
M. A.
, 1992, “
Fluid Shear Stress Modulates Cytosolic Free Calcium in Vascular Endothelial Cells
,”
Am. J. Physiol.
0002-9513,
262
,
C384
C390
.
You do not currently have access to this content.