In this study, the magnetic resonance (MR) elastography technique was used to estimate the dynamic shear modulus of mouse brain tissue in vivo. The technique allows visualization and measurement of mechanical shear waves excited by lateral vibration of the skull. Quantitative measurements of displacement in three dimensions during vibration at 1200Hz were obtained by applying oscillatory magnetic field gradients at the same frequency during a MR imaging sequence. Contrast in the resulting phase images of the mouse brain is proportional to displacement. To obtain estimates of shear modulus, measured displacement fields were fitted to the shear wave equation. Validation of the procedure was performed on gel characterized by independent rheometry tests and on data from finite element simulations. Brain tissue is, in reality, viscoelastic and nonlinear. The current estimates of dynamic shear modulus are strictly relevant only to small oscillations at a specific frequency, but these estimates may be obtained at high frequencies (and thus high deformation rates), noninvasively throughout the brain. These data complement measurements of nonlinear viscoelastic properties obtained by others at slower rates, either ex vivo or invasively.

1.
Srinivasan
,
S.
,
Krouskop
,
T.
, and
Ophir
,
J.
, 2004, “
A Quantitative Comparison of Modulus Images Obtained Using Nanoindentation with Strain Elastograms
,”
Ultrasound Med. Biol.
0301-5629,
30
(
7
), pp.
899
918
.
2.
Xie
,
H.
,
Kim
,
K.
,
Aglyamov
,
S. R.
,
Emelianov
,
S. Y.
,
O’Donnell
,
M.
,
Weitzel
,
W. F.
,
Wrobleski
,
S. K.
,
Myers
,
D. D.
,
Wakefield
,
T. W.
, and
Rubin
,
J. M.
, 2005, “
Correspondence of Ultrasound Elasticity Imaging to Direct Mechanical Measurement in Aging DVT Rats
,”
Ultrasound Med. Biol.
0301-5629,
31
(
10
), pp.
1351
1359
.
3.
Techavipoo
,
U.
,
Chen
,
Q.
,
Varghese
,
T.
, and
Zagzebski
,
J. A.
, 2004, “
Estimation of Displacement Vectors and Strain Tensors in Elastography Using Angular Isonifications
,”
IEEE Trans. Med. Imaging
0278-0062,
20
(
12
), pp.
1479
1489
.
4.
Bayly
,
P. V.
,
Cohen
,
T. S.
,
Leister
,
E. P.
,
Ajo
,
D.
,
Leuthardt
,
E. C.
, and
Genin
,
G. M.
, 2005, “
Deformation of the Human Brain Induced by Mild Acceleration
,”
J. Neurotrauma
0897-7151,
22
(
8
), pp.
845
856
.
5.
Bayly
,
P. V.
,
Black
,
E. E.
,
Pedersen
,
R. C.
,
Leister
,
E. P.
, and
Genin
,
G. M.
, 2006, “
In Vivo Measurement of Rapid Deformation and Strain in an Animal Model of Traumatic Brain Injury
,”
J. Biomech.
0021-9290,
39
(
6
), pp.
1086
1095
.
6.
Margulies
,
S. S.
,
Thibault
,
L. E.
, and
Gennarelli
,
T. A.
, 1990, “
Physical Model Simulations of Brain Injury in a Primate
,”
J. Biomech.
0021-9290,
23
(
8
), pp.
823
836
.
7.
Prange
,
M. T.
, and
Margulies
,
S. S.
, 2002, “
Regional, Directional, and Age-Dependent Properties of the Brain Undergoing Large Deformation
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
2
), pp.
244
252
.
8.
Gefen
,
A.
, and
Margulies
,
S. S.
, 2004, “
Are In Vivo and In Situ Brain Tissues Mechanically Similar
?”
J. Biomech.
0021-9290,
37
(
9
), pp.
1339
1352
.
9.
Darvish
,
K. K.
, and
Crandall
,
J. R.
, 2001, “
Nonlinear Viscoelastic Effects in Oscillatory Shear Deformation of Brain Tissue
,”
Med. Eng. Phys.
1350-4533,
23
, pp.
633
645
.
10.
Van Essen
,
D.
, 1997, “
A Tension-Based Theory of Morphogenesis and Compact Wiring in the Central Nervous System
,”
Nature (London)
0028-0836,
385
(
6614
), pp.
313
318
.
11.
Othman
,
S. F.
,
Xu
,
H.
,
Royston
,
T. J.
, and
Magin
,
R. L.
, 2005, “
Microscopic Magnetic Resonance Elastography (μMRE)
,”
Magn. Reson. Med.
0740-3194,
54
(
3
), pp.
605
615
.
12.
Muthupillai
,
R.
,
Lomas
,
D. J.
,
Rossman
,
P. J.
,
Greenleaf
,
J. F.
,
Manduca
,
A.
, and
Ehman
,
R. L.
, 1995, “
Magnetic Resonance Elastography by Direct Visualization of Propagating Acoustic Strain Waves
,”
Science
0036-8075,
269
(
5232
), pp.
1854
1857
.
13.
Romano
,
A. J.
,
Bucaro
,
J. A.
,
Ehman
,
R. L.
, and
Shirron
,
J. J.
, 2000, “
Evaluation of a Material Parameter Extraction Algorithm Using MRI-Based Displacement Measurements
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
47
(
6
), pp.
1575
1581
.
14.
Manduca
,
A.
,
Oliphant
,
T. E.
,
Dresner
,
M. A.
,
Mahowald
,
J. L.
,
Kruse
,
S. A.
,
Amromin
,
E.
,
Felmlee
,
J. P.
,
Greenleaf
,
J. F.
, and
Ehman
,
R. L.
, 2001, “
Magnetic Resonance Elastography: Non-Invasive Mapping of Tissue Elasticity
,”
Med. Image Anal.
1361-8415,
5
, pp.
237
254
.
15.
McCracken
,
P. J.
,
Manduca
,
A.
,
Felmlee
,
J.
, and
Ehman
,
R. L.
, 2005, “
Mechanical Transient-Based Magnetic Resonance Elastography
,”
Magn. Reson. Med.
0740-3194,
53
(
3
), pp.
628
639
.
16.
Romano
,
A. J.
,
Abraham
,
P. B.
,
Rossman
,
P. J.
,
Bucaro
,
J. A.
, and
Ehman
,
R. L.
, 2005, “
Determination and Analysis of Guided Wave Propagation Using Magnetic Resonance Elastography
,”
Magn. Reson. Med.
0740-3194,
54
(
4
), pp.
893
900
.
17.
Sinkus
,
R.
,
Tanter
,
M.
,
Catheline
,
S.
,
Lorenzen
,
J.
,
Kuhl
,
C.
,
Sondermann
,
E.
, and
Fink
,
M.
, 2005, “
Imaging Anisotropic and Viscous Properties of Breast Tissue by Magnetic Resonance-Elastography
,”
Magn. Reson. Med.
0740-3194,
53
(
2
), pp.
272
387
.
18.
Plewes
,
D. B.
,
Silver
,
S.
,
Starkoski
,
B.
, and
Walker
,
C. L. J.
, 2000, “
Magnetic Resonance Imaging of Ultrasound Fields: Gradient Characteristics
,”
J. Magn. Reson Imaging
1053-1807,
11
(
4
), pp.
452
457
.
19.
Lopez
,
O.
,
Manduca
,
A.
, and
Ehman
,
R. L.
, 2006, “
Validation of a Dynamic MR Elastography Technique Customized for In Vitro Biomechanical Assessment of Articular Cartilage Under High Frequency Cyclical Shear
,”
ISMRM 14th Scientific Meeting
,
Seattle
,
WA
, No.
325
.
20.
Fung
,
Y. C.
, 1994,
A First Course in Continuum Mechanics
,
Prentice-Hall
,
Englewood Cliffs, NJ
, Chap. 12, p.
271
.
21.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
, 1992,
Numerical Recipes in C
,
Cambridge University Press
,
New York
.
22.
Miller
,
K.
, and
Chinzei
,
K.
, 2002, “
Mechanical Properties of Brain Tissue in Tension
,”
J. Biomech.
0021-9290,
35
(
4
), pp.
483
490
.
23.
Brands
,
D. W. A.
,
Bovendeerd
,
P. H. M.
, and
Peters
,
G. W. M.
, 2000, “
The Large Shear Strain Dynamic Behaviour of In-Vitro Porcine Brain Tissue and a Silicone Gel Model Material
,”
Proc. Stapp Car Crash Conf.
0585-086X,
44
, pp.
249
260
.
24.
Bilston
,
L. E.
,
Liu
,
Z.
, and
Phan-Thien
,
H.
, 2001, “
Large Strain Behavior of Brain Tissue in Shear: Some Experimental Data and Differential Constitutive Model
,”
Biorheology
0006-355X,
38
, pp.
335
345
.
You do not currently have access to this content.