The aim of this study was to determine the relative contributions of the deltoid and rotator cuff muscles to glenohumeral joint stability during arm abduction. A three-dimensional model of the upper limb was used to calculate the muscle and joint-contact forces at the shoulder for abduction in the scapular plane. The joints of the shoulder girdle—sternoclavicular joint, acromioclavicular joint, and glenohumeral joint—were each represented as an ideal three degree-of-freedom ball-and-socket joint. The articulation between the scapula and thorax was modeled using two kinematic constraints. Eighteen muscle bundles were used to represent the lines of action of 11 muscle groups spanning the glenohumeral joint. The three-dimensional positions of the clavicle, scapula, and humerus during abduction were measured using intracortical bone pins implanted into one subject. The measured bone positions were inputted into the model, and an optimization problem was solved to calculate the forces developed by the shoulder muscles for abduction in the scapular plane. The model calculations showed that the rotator cuff muscles (specifically, supraspinatus, subscapularis, and infraspinatus) by virtue of their lines of action are perfectly positioned to apply compressive load across the glenohumeral joint, and that these muscles contribute most significantly to shoulder joint stability during abduction. The middle deltoid provides most of the compressive force acting between the humeral head and the glenoid, but this muscle also creates most of the shear, and so its contribution to joint stability is less than that of any of the rotator cuff muscles.

1.
Lee
,
S. B.
,
Kim
,
K. J.
,
O’Driscoll
,
S. W.
,
Morrey
,
B. F.
, and
An
,
K. N.
, 2000, “
Dynamic Glenohumeral Stability Provided by the Rotator Cuff Muscles in the Mid-Range and End-Range of Motion. A Study in Cadavera
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
82
, pp.
849
857
.
2.
Lippitt
,
S.
, and
Matsen
,
F.
, 1993, “
Mechanisms of Glenohumeral Joint Stability
,”
Clin. Orthop. Relat. Res.
0009-921X,
291
, pp.
20
28
.
3.
Howell
,
S. M.
,
Imobersteg
,
A. M.
,
Seger
,
D. H.
, and
Marone
,
P. J.
, 1986, “
Clarification of the Role of the Supraspinatus Muscle in Shoulder Function
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
68
, pp.
398
404
.
4.
Kido
,
T.
,
Itoi
,
E.
,
Lee
,
S. B.
,
Neale
,
P. G.
, and
An
,
K. N.
, 2003, “
Dynamic Stabilizing Function of the Deltoid Muscle in Shoulders With Anterior Instability
,”
Am. J. Sports Med.
0363-5465,
31
, pp.
399
403
.
5.
Labriola
,
J. E.
,
Lee
,
T. Q.
,
Debski
,
R. E.
, and
McMahon
,
P. J.
, 2005, “
Stability and Instability of the Glenohumeral Joint: The Role of Shoulder Muscles
,”
J. Shoulder Elbow Surg.
1058-2746,
14
, pp.
32S
38S
.
6.
Lee
,
S. B.
, and
An
,
K. N.
, 2002, “
Dynamic Glenohumeral Stability Provided by Three Heads of the Deltoid Muscle
,”
Clin. Orthop. Relat. Res.
0009-921X,
400
, pp.
40
47
.
7.
McMahon
,
P. J.
,
Debski
,
R. E.
,
Thompson
,
W. O.
,
Warner
,
J. J.
,
Fu
,
F. H.
, and
Woo
,
S. L.
, 1995, “
Shoulder Muscle Forces and Tendon Excursions During Glenohumeral Abduction in the Scapular Plane
,”
J. Shoulder Elbow Surg.
1058-2746,
4
, pp.
199
208
.
8.
Thompson
,
W. O.
,
Debski
,
R. E.
,
Boardman
,
N. D.
, III
,
Taskiran
,
E.
,
Warner
,
J. J.
,
Fu
,
F. H.
, and
Woo
,
S. L.
, 1996, “
A Biomechanical Analysis of Rotator Cuff Deficiency in a Cadaveric Model
,”
Am. J. Sports Med.
0363-5465,
24
, pp.
286
292
.
9.
Hughes
,
R. E.
, and
An
,
K. N.
, 1996, “
Force Analysis of Rotator Cuff Muscles
,”
Clin. Orthop. Relat. Res.
0009-921X,
330
, pp.
75
83
.
10.
Apreleva
,
M.
,
Parsons
,
I. M.
,
Warner
,
J. J.
,
Fu
,
F. H.
, and
Woo
,
S. L.
, 2000, “
Experimental Investigation of Reaction Forces at the Glenohumeral Joint During Active Abduction
,”
J. Shoulder Elbow Surg.
1058-2746,
9
, pp.
409
417
.
11.
Inman
,
V. T.
,
Saunders
,
J. B.
, and
Abbott
,
L. C.
, 1996, “
Observations of the Function of the Shoulder Joint. 1944
,”
Clin. Orthop. Relat. Res.
0009-921X,
330
, pp.
3
12
.
12.
Poppen
,
N. K.
, and
Walker
,
P. S.
, 1978, “
Forces at the Glenohumeral Joint in Abduction
,”
Clin. Orthop. Relat. Res.
0009-921X,
135
, pp.
165
170
.
13.
van der Helm
,
F. C.
, 1994, “
Analysis of the Kinematic and Dynamic Behavior of the Shoulder Mechanism
,”
J. Biomech.
0021-9290,
27
, pp.
527
550
.
14.
Karlsson
,
D.
, and
Peterson
,
B.
, 1992, “
Towards a Model for Force Predictions in the Human Shoulder
,”
J. Biomech.
0021-9290,
25
, pp.
189
199
.
15.
Garner
,
B. A.
, and
Pandy
,
M. G.
, 1999, “
A Kinematic Model of the Upper Limb Based on the Visible Human Project (VHP) Image Dataset
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
2
, pp.
107
124
.
16.
Garner
,
B. A.
, and
Pandy
,
M. G.
, 2001, “
Musculoskeletal Model of the Upper Limb Based on the Visible Human Male Dataset
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
4
, pp.
93
126
.
17.
Garner
,
B. A.
, and
Pandy
,
M. G.
, 2000, “
The Obstacle-Set Method for Representing Muscle Paths in Musculoskeletal Models
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
3
, pp.
1
30
.
18.
Yanagawa
,
T.
,
Shelburne
,
K.
,
Torry
,
M.
,
Goodwin
,
C.
, and
Pandy
,
M.
, 2004, “
Moment Arms of Shoulder Muscles During Movement: An Upper Extremity Model Validation Study
,” American College of Sports Medicine, Indianapolis.
19.
Otis
,
J. C.
,
Warren
,
R. F.
,
Backus
,
S. I.
,
Santner
,
T. J.
, and
Mabrey
,
J. D.
, 1990, “
Torque Production in the Shoulder of the Normal Young Adult Male. The Interaction of Function, Dominance, Joint Angle, And Angular Velocity
,”
Am. J. Sports Med.
0363-5465,
18
, pp.
119
123
.
20.
Hughes
,
R. E.
,
Niebur
,
G.
,
Liu
,
J.
, and
An
,
K. N.
, 1998, “
Comparison of Two Methods for Computing Abduction Moment Arms of the Rotator Cuff
,”
J. Biomech.
0021-9290,
31
, pp.
157
160
.
21.
Kuechle
,
D. K.
,
Newman
,
S. R.
,
Itoi
,
E.
,
Morrey
,
B. F.
, and
An
,
K. N.
, 1997, “
Shoulder Muscle Moment Arms During Horizontal Flexion and Elevation
,”
J. Shoulder Elbow Surg.
1058-2746,
6
, pp.
429
439
.
22.
Kuechle
,
D. K.
,
Newman
,
S. R.
,
Itoi
,
E.
,
Niebur
,
G. L.
,
Morrey
,
B. F.
, and
An
,
K. N.
, 2000, “
The Relevance of the Moment Arm of Shoulder Muscles With Respect to Axial Rotation of the Glenohumeral Joint in Four Positions
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
15
, pp.
322
329
.
23.
Zajac
,
F. E.
, 1989, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
0278-940X,
17
, pp.
359
411
.
24.
Garner
,
B. A.
, and
Pandy
,
M. G.
, 2003, “
Estimation of Musculotendon Properties in the Human Upper Limb
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
207
220
.
25.
Basmajian
,
J.
, 1989,
Biofeedback: Principles and Practice for Clinicians
,
Williams and Wilkins
,
Baltimore
.
26.
Delagi
,
E.
,
Perrotto
,
A.
,
Iazetti
,
J.
, and
Morrison
,
D.
, 1981,
Anatomic Guide for the Electromyographer
,
Charles, C. Thomas
,
Springfield, IL
.
27.
Kadaba
,
M. P.
,
Cole
,
A.
,
Wootten
,
M. E.
,
McCann
,
P.
,
Reid
,
M.
,
Mulford
,
G.
,
April
,
E.
, and
Bigliani
,
L.
, 1992, “
Intramuscular Wire Electromyography of the Subscapularis
,”
J. Orthop. Res.
0736-0266,
10
, pp.
394
397
.
28.
Friederich
,
J. A.
, and
Brand
,
R. A.
, 1990, “
Muscle Fiber Architecture in the Human Lower Limb
,”
J. Biomech.
0021-9290,
23
, pp.
91
95
.
29.
Redl
,
C.
,
Gfoehler
,
M.
, and
Pandy
,
M. G.
, 2007, “
Sensitivity of Muscle Force Estimates to Variations in Muscle-Tendon Properties
,”
Hum. Mov. Sci.
0167-9457,
26
, pp.
306
319
.
30.
Scovil
,
C. Y.
, and
Ronsky
,
J. L.
, 2006, “
Sensitivity of a Hill-Based Muscle Model to Perturbations in Model Parameters
,”
J. Biomech.
0021-9290,
39
, pp.
2055
2063
.
31.
van der Helm
,
F. C.
, 1994, “
A Finite Element Musculoskeletal Model of the Shoulder Mechanism
,”
J. Biomech.
0021-9290,
27
, pp.
551
569
.
32.
Bigliani
,
L. U.
,
Kelkar
,
R.
,
Flatow
,
E. L.
,
Pollock
,
R. G.
, and
Mow
,
V. C.
, 1996, “
Glenohumeral Stability. Biomechanical Properties of Passive and Active Stabilizers
,”
Clin. Orthop. Relat. Res.
0009-921X,
330
, pp.
13
30
.
33.
Bey
,
M. J.
,
Zauel
,
R.
,
Brock
,
S. K.
, and
Tashman
,
S.
, 2006, “
Validation of a New Model-Based Tracking Technique for Measuring Three-Dimensional, In Vivo Glenohumeral Joint Kinematics
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
604
609
.
34.
Kido
,
T.
,
Itoi
,
E.
,
Konno
,
N.
,
Sano
,
A.
,
Urayama
,
M.
, and
Sato
,
K.
, 2000, “
The Depressor Function of Biceps on the Head of the Humerus in Shoulders With Tears of the Rotator Cuff
,”
J. Bone Joint Surg. Br.
0301-620X,
82
, pp.
416
419
.
35.
Ludewig
,
P. M.
,
Cook
,
T. M.
, and
Nawoczenski
,
D. A.
, 1996, “
Three-Dimensional Scapular Orientation and Muscle Activity at Selected Positions of Humeral Elevation
,”
J. Orthop. Sports Phys. Ther.
0190-6011,
24
, pp.
57
65
.
36.
McClure
,
P. W.
,
Michener
,
L. A.
,
Sennett
,
B. J.
, and
Karduna
,
A. R.
, 2001, “
Direct 3-Dimensional Measurement of Scapular Kinematics During Dynamic Movements In Vivo
,”
J. Shoulder Elbow Surg.
1058-2746,
10
, pp.
269
277
.
37.
Johnson
,
G. R.
,
Stuart
,
P. R.
, and
Mitchell
,
S.
, 1993, “
A Method for the Measurement of Three-Dimensional Scapular Movement
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
8
, pp.
269
273
.
38.
DeLuca
,
C. J.
, and
Forrest
,
W. J.
, 1973, “
Force Analysis of Individual Muscles Acting Simultaneously on the Shoulder Joint During Isometric Abduction
,”
J. Biomech.
0021-9290,
6
, pp.
385
393
.
You do not currently have access to this content.