Blood flow in a small tube can be successfully modeled by the two-fluid model. The fully developed, constant heat flux convective heat transfer problem is studied. The velocity and temperature profiles are determined in closed form. Formulas for friction-factor-Reynolds number product, axial temperature gradient, and Nusselt number are found.
Issue Section:
Technical Briefs
Keywords:
convection,
flow simulation,
friction,
haemodynamics,
physiological models,
pipe flow,
blood flow,
two fluid,
heat
1.
Schottelius
, B. A.
, and Schottelius
, D. D.
, 1978, Textbook of Physiology
, 18th ed., Mosby
, St. Louis
.2.
1985,
Heat Transfer in Medicine and Biology
, A.
Shitzer
and R. C.
Eberhart
, eds., Plenum
, New York
, Vol. II
.3.
Arkin
, H.
, Xu
, L. X.
, and Holmes
, K. R.
, 1994, “Recent Developments in Modeling Heat Transfer in Blood Perfused Tissues
,” IEEE Trans. Biomed. Eng.
0018-9294, 41
, pp. 97
–107
.4.
Crezee
, J.
, Mooibroek
, J.
, Lagendijk
, J. J. W.
, and van Leeuwen
, G. M. J.
, 1994, “The Theoretical and Experimental Evaluation of the Heat Balance in Perfused Tissue
,” Phys. Med. Biol.
0031-9155, 39
, pp. 813
–832
.5.
Diller
, K. R.
, and Ryan
, T. P.
, 1998, “Heat Transfer in Living Systems: Current Opportunities
,” ASME J. Heat Transfer
0022-1481, 120
, pp. 810
–829
.6.
Chen
, M. M.
, and Holmes
, K. R.
, 1980, “Microvascular Contributions in Tissue Heat Transfer
,” Ann. N.Y. Acad. Sci.
0077-8923, 335
, pp. 137
–151
.7.
Chato
, J. C.
, 1980, “Heat Transfer to Blood Vessels
,” J. Biomed. Eng.
0141-5425, 102
, pp. 110
–118
.8.
Shah
, R. K.
, and London
, A. L.
, 1978, Laminar Flow Heat Forced Convection in Ducts
, Academic
, New York
.9.
Pries
, A. R.
, Secomb
, T. W.
, and Gaehtgens
, P.
, 1996, “Biophysical Aspects of Blood Flow in the Microvasculature
,” Cardiovasc. Res.
0008-6363, 32
, pp. 654
–667
.10.
Mchedlishvili
, G.
, and Maeda
, N.
, 2001, “Blood Flow Structure Related to Red Cell Flow: A Determinant of Blood Fluidity in Narrow Microvessels
,” Jpn. J. Physiol.
0021-521X, 51
, pp. 19
–30
.11.
Hayes
, R. H.
, 1960, “Physical Basis of the Dependence of Blood Viscosity on Tube Radius
,” Am. J. Physiol.
0002-9513, 198
, pp. 1193
–1200
.12.
Sharan
, M.
, and Popel
, A. S.
, 2001, “A Two-Phase Model for Flow of Blood in Narrow Tubes With Increased Effective Viscosity Near the Wall
,” Biorheology
0006-355X, 38
, pp. 415
–428
.13.
Wang
, C. Y.
, and Bassingthwaighte
, J. B.
, 2003, “Blood Flow in Small Curved Tubes
,” ASME J. Biomech. Eng.
0148-0731, 125
, pp. 910
–913
.14.
Gaehtgens
, P.
, Meiselman
, H. J.
, and Wayland
, H.
, 1970, “Velocity Profiles of Human Blood at Normal and Reduced Hematocrit in Glass Tubes up to 130μ Diameter
,” Microvasc. Res.
0026-2862, 2
, pp. 13
–23
.15.
Kays
, W. M.
, Crawford
, M. E.
, and Wiegand
, B.
, 2005, Convective Heat and Mass Transfer
, 4th ed., McGraw-Hill
, Boston
.16.
Duck
, F. A.
, 1990, Physical Properties of Tissue
, Academic
, London
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.