Knowledge of the forces that act upon the equine humerus while the horse is standing and the resulting strains experienced by the bone is useful for the prevention and treatment of fractures and for assessing the proximolateral aspect of the bone as a site for obtaining autogenous bone graft material. The first objective was to develop a mathematical model to predict the loads on the proximal half of the humerus created by the surrounding musculature and ground reaction forces while the horse is standing. The second objective was to calculate surface bone stresses and strains at three cross sections on the humerus corresponding to the donor site for bone grafts, a site predisposed to stress fracture, and the middle of the diaphysis. A three-dimensional mathematical model employing optimization techniques and asymmetrical beam analysis was used to calculate shoulder muscle forces and surface strains on the proximal and mid-diaphyseal aspects of the humerus. The active shoulder muscles, which included the supraspinatus, infraspinatus, subscapularis, and short head of the deltoid, produced small forces while the horse is standing; all of which were limited to 4.3% of their corresponding maximum voluntary contraction. As a result, the strains calculated at the proximal cross sections of the humerus were small, with maximum compressive strains of 104με at the cranial aspect of the bone graft donor cross section. The middle of the diaphysis experienced larger strain magnitudes with compressive strains at the lateral and the caudal aspects and tensile strains at the medial and cranial aspects (377με and 258με maximum values, respectively) while the horse is standing. Small strains at the donor bone graft site do not rule out using this location to harvest bone graft tissue, although strains while rising to a standing position during recovery from anesthesia are unknown. At the site common to stress fractures, small strains imply that the stresses seen by this region while the horse is standing, although applied for long periods of time, are not a cause of fracture in this location. Knowing the specific regions of the middle of the diaphysis of the humerus that experience tensile and compressive strains is valuable in determining optimum placement of internal fixation devices for the treatment of complete fractures.

1.
Brown
,
N. A.
,
Pandy
,
M. G.
,
Kawcak
,
C. E.
, and
McIlwraith
,
C. W.
, 2003, “
Force- and Moment-Generating Capacities of Muscles in the Distal Forelimb of the Horse
,”
J. Anat.
0021-8782,
203
(
1
), pp.
101
113
.
2.
Hodson
,
E.
,
Clayton
,
H. M.
, and
Lanovaz
,
J. L.
, 2000, “
The Forelimb in Walking Horses: 1. Kinematics and Ground Reaction Forces
,”
Equine Vet. J.
0425-1644,
32
(
4
), pp.
287
294
.
3.
Markel
,
M. D.
, 1996, “
Fracture Biomechanics
,”
Equine Fracture Repair
,
A. J.
Nixon
, ed.,
W. B. Saunders Co.
,
Philadelphia, PA
, pp.
10
18
.
4.
Nixon
,
A. J.
, and
Watkins
,
J. P.
, 1996, “
Fractures of the Humerus
,”
Equine Fracture Repair
,
A. J.
Nixon
, ed.,
W. B. Saunders Co.
,
Philadelphia, PA
, pp.
242
253
.
5.
Nunamaker
,
D. M.
,
Butterweck
,
D. M.
, and
Provost
,
M. T.
, 1990, “
Fatigue Fractures in Thoroughbred Racehorses: Relationships With Age, Peak Bone Strain, and Training
,”
J. Orthop. Res.
0736-0266,
8
(
4
), pp.
604
611
.
6.
Stover
,
S. M.
,
Johnson
,
B. J.
,
Daft
,
B. M.
,
Read
,
D. H.
,
Anderson
,
M.
,
Barr
,
B. C.
,
Kinde
,
H.
,
Moore
,
J.
,
Stoltz
,
J.
,
Ardans
,
A. A.
, and
Pool
,
R. R.
, 1992, “
An Association Between Complete and Incomplete Stress Fractures of the Humerus in Racehorses
,”
Equine Vet. J.
0425-1644,
24
(
4
), pp.
260
263
.
7.
Turner
,
A. S.
,
Mills
,
E. J.
, and
Gabel
,
A. A.
, 1975, “
In Vivo Measurement of Bone Strain in the Horse
,”
Am. J. Vet. Res.
0002-9645,
36
(
11
), pp.
1573
1579
.
8.
Harriss
,
F. K.
,
Galuppo
,
L. D.
,
Decock
,
H. E.
,
McDuffee
,
L. A.
, and
Macdonald
,
M. H.
, 2004, “
Evaluation of a Technique for Collection of Cancellous Bone Graft From the Proximal Humerus in Horses
,”
Vet. Surg.
0161-3499,
33
(
3
), pp.
293
300
.
9.
Rybicki
,
E. F.
, and
Mills
,
E. J.
, 1977, “
In Vivo and Analytical Studies of Forces and Moments in Equine Long Bones
,”
J. Biomech.
0021-9290,
10
(
11/12
), pp.
701
705
.
10.
Hartman
,
W.
,
Schamhardt
,
H. C.
,
Lammertink
,
J. L.
, and
Badoux
,
D. M.
, 1984, “
Bone Strain in the Equine Tibia: An In Vivo Strain Gauge Analysis
,”
Am. J. Vet. Res.
0002-9645,
45
(
5
), pp.
880
884
.
11.
Biewener
,
A. A.
,
Thomason
,
J.
,
Goodship
,
A.
, and
Lanyon
,
L. E.
, 1983, “
Bone Stress in the Horse Forelimb During Locomotion at Different Gaits: A Comparison of Two Experimental Methods
,”
J. Biomech.
0021-9290,
16
(
8
), pp.
565
576
.
12.
Gross
,
T. S.
,
McLeod
,
K. J.
, and
Rubin
,
C. T.
, 1992, “
Characterizing Bone Strain Distributions In Vivo Using Three Triple Rosette Strain Gages
,”
J. Biomech.
0021-9290,
25
(
9
), pp.
1081
1087
.
13.
Les
,
C. M.
,
Keyak
,
J. H.
,
Stover
,
S. M.
, and
Taylor
,
K. T.
, 1997, “
Development and Validation of a Series of Three-Dimensional Finite Element Models of the Equine Metacarpus
,”
J. Biomech.
0021-9290,
30
(
7
), pp.
737
742
.
14.
Fleck
,
C.
, and
Eifler
,
D.
, 2003, “
Deformation Behaviour and Damage Accumulation of Cortical Bone Specimens From the Equine Tibia Under Cyclic Loading
,”
J. Biomech.
0021-9290,
36
(
2
), pp.
179
189
.
15.
Barone
,
R.
, 1976,
Anatomie Comparee Des Mammiferes Domestiques, Tome I Osteologie
, 2nd ed.,
Vigot
,
Paris, France
, pp.
272
290
.
16.
Dyce
,
K. M.
,
Sack
,
W. O.
, and
Wensing
,
C. J. G.
, 2002,
Textbook of Veterinary Anatomy
, 3rd ed.,
Elsevier Science
,
Philadelphia, PA
, pp.
568
605
.
17.
Pasquini
,
C.
, 1991,
Atlas of Equine Anatomy, Regional Approach
, 3rd ed.,
SUDZ
,
Pilot Point, TX
, pp.
166
210
.
18.
Brand
,
R. A.
,
Crowninshield
,
R. D.
,
Wittstock
,
C. E.
,
Pedersen
,
D. R.
,
Clark
,
C. R.
, and
van Krieken
,
F. M.
, 1982, “
A Model of Lower Extremity Muscular Anatomy
,”
ASME J. Biomech. Eng.
0148-0731,
104
(
4
), pp.
304
310
.
19.
Hollister
,
A. M.
,
Jatana
,
S.
,
Singh
,
A. K.
,
Sullivan
,
W. W.
, and
Lupichuk
,
A. G.
, 1993, “
The Axes of Rotation of the Knee
,”
Clin. Orthop. Relat. Res.
0009-921X,
290
, pp.
259
268
.
20.
Korsgaard
,
E.
, 1982, “
Muskelfunktionen I Hestens Forben, En Elektromyografisk Og Kinesiologisk Undersogelse
,” Ph.D. Thesis, De. Kgl. Veterinaer—og Landbohojskole, Institut for Kirurgi, Kobenhavn, Denmark.
21.
Tokuriki
,
M.
, 1973, “
Electromyographic and Joint-Mechanical Studies in Quadrupedal Locomotion. I. Walk
,”
Nippon Juigaku Zasshi
0021-5295,
35
(
5
), pp.
433
436
.
22.
Crowninshield
,
R. D.
, and
Brand
,
R. A.
, 1981, “
A Physiologically Based Criterion of Muscle Force Prediction in Locomotion
,”
J. Biomech.
0021-9290,
14
(
11
), pp.
793
801
.
23.
Berme
,
N.
,
Heydinger
,
G.
, and
Cappozzo
,
A.
, 1987, “
Calculation of Loads Transmitted at the Anatomical Joints
,”
Biomechanics of Engineering: Modeling, Simulation, Control
,
A.
Morecki
, ed.,
Springer
,
Wien, NY
, pp.
89
131
.
24.
Zajac
,
F. E.
, 1989, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
0278-940X,
17
(
4
), pp.
359
411
.
25.
Swanstrom
,
M. D.
,
Zarucco
,
L.
,
Stover
,
S. M.
,
Hubbard
,
M.
,
Hawkins
,
D. A.
,
Driessen
,
B.
, and
Steffey
,
E. P.
, 2005, “
Passive and Active Mechanical Properties of the Superficial and Deep Digital Flexor Muscles in the Forelimbs of Anesthetized Thoroughbred Horses
,”
J. Biomech.
0021-9290,
38
(
3
), pp.
579
586
.
26.
Lieber
,
R. L.
, 2002,
Skeletal Muscle Structure, Function, and Plasticity
, 2nd ed.,
Lippincott Williams & Wilkins
,
Baltimore, MD
, pp.
45
112
.
27.
Koch
,
J. C.
, 1917, “
The Laws of Bone Architecture
,”
Am. J. Anat.
0002-9106,
21
(
2
), pp.
177
298
.
28.
Rybicki
,
E. F.
,
Simonen
,
F. A.
, and
Weis
,
E. B.
, Jr.
, 1972, “
On the Mathematical Analysis of Stress in the Human Femur
,”
J. Biomech.
0021-9290,
5
(
2
), pp.
203
215
.
29.
Ugural
,
A. C.
, and
Fenster
,
S. K.
, 1987,
Advanced Strength and Applied Elasticity
, 2nd SI ed.,
Elsevier Science
,
New York, NY
, pp.
135
143
.
30.
Nevens
,
A. L.
,
Stover
,
S. M.
, and
Hawkins
,
D. A.
, 2005, “
Evaluation of the Passive Function of the Biceps Brachii Muscle-Tendon Unit in Limitation of Shoulder and Elbow Joint Ranges of Motion in Horses
,”
Am. J. Vet. Res.
0002-9645,
66
(
3
), pp.
391
400
.
31.
Lieber
,
R. L.
, 1999, “
Skeletal Muscle Is a Biological Example of a Linear Electro-Active Actuator
,”
Proceedings of the SPIE’s 6th Annual International Symposium on Smart Structures and Materials
, Mar. 1–5,
San Diego, CA
, Paper No. 3669-03, pp.
19
25
.
32.
Powell
,
P. L.
,
Roy
,
R. R.
,
Kanim
,
P.
,
Bello
,
M. A.
, and
Edgerton
,
V. R.
, 1984, “Predictability of Skeletal Muscle Tension From Architectural Determinations in Guinea Pig Hindlimbs,” J. Appl. Physiol., 57(6), pp. 1715–1721.
33.
Fukunaga
,
T.
,
Roy
,
R. R.
,
Shellock
,
F. G.
,
Hodgson
,
J. A.
, and
Edgerton
,
V. R.
, 1996, “
Specific Tension of Human Plantar Flexors and Dorsiflexors
,”
J. Appl. Physiol.
8750-7587,
80
(
1
), pp.
158
165
.
34.
Rome
,
L. C.
,
Sosnicki
,
A. A.
, and
Goble
,
D. O.
, 1990, “
Maximum Velocity of Shortening of Three Fibre Types From Horse Soleus Muscle: Implications for Scaling With Body Size
,”
J. Physiol. (London)
0022-3751,
431
, pp.
173
185
.
35.
Toridis
,
T. G.
, 1969, “
Stress Analysis of the Femur
,”
J. Biomech.
0021-9290,
2
(
2)
, pp.
163
174
.
36.
Piotrowski
,
G.
, and
Wilcox
,
G. A.
, Jr.
, 1971, “
The Stress Program: A Computer Program for the Analysis of Stresses in Long Bones
,”
J. Biomech.
0021-9290,
4
(
6
), pp.
497
506
.
37.
Lieberman
,
D. E.
,
Polk
,
J. D.
, and
Demes
,
B.
, 2004, “
Predicting Long Bone Loading From Cross-Sectional Geometry
,”
Am. J. Phys. Anthropol.
0002-9483,
123
(
2
), pp.
156
171
.
38.
Nigg
,
B. M.
, and
Grimston
,
S. K.
, 1994, “
Bone
,”
Biomechanics of the Musculo-Skeletal System
,
B. M.
Nigg
and
W.
Herzog
, eds.,
Wiley
,
Chichester, NY
, pp.
61
62
.
39.
Cordey
,
J.
, and
Gautier
,
E.
, 1999, “
Strain Gauges Used in the Mechanical Testing of Bones. Part I: Theoretical and Technical Aspects
,”
Injury
0020-1383,
30
(
1
), pp.
A7
A13
.
40.
MacFadden
,
B.
, 1993, “
How Can Horses Stand for So Long?
,”
Florida Fossil Horse Newsletter
, Florida Museum of Natural History, Gainesville, FL, Vol.
2
, Issue
4
, http://www.flmnh.ufl.edu/ponyexpress/pony2_4/Pe24.htmhttp://www.flmnh.ufl.edu/ponyexpress/pony2_4/Pe24.htm
41.
Pollock
,
S.
,
Stover
,
S. M.
,
Hull
,
M. L.
, and
Galuppo
,
L. D.
, 2008, “
A Musculoskeletal Model of the Equine Forelimb for Determining Stresses and Strains in the Humerus—Part II. Experimental Testing and Model Validation
,”
ASME J. Biomech. Eng.
0148-0731,
130
, p.
041007
.
You do not currently have access to this content.