The objective of this study is to quantify the detailed three-dimensional (3D) pulsatile hemodynamics, mechanical loading, and perfusion characteristics of a patient-specific neonatal aortic arch during cardiopulmonary bypass (CPB). The 3D cardiac magnetic resonance imaging (MRI) reconstruction of a pediatric patient with a normal aortic arch is modified based on clinical literature to represent the neonatal morphology and flow conditions. The anatomical dimensions are verified from several literature sources. The CPB is created virtually in the computer by clamping the ascending aorta and inserting the computer-aided design model of the 10 Fr tapered generic cannula. Pulsatile (130 bpm) 3D blood flow velocities and pressures are computed using the commercial computational fluid dynamics (CFD) software. Second order accurate CFD settings are validated against particle image velocimetry experiments in an earlier study with a complex cardiovascular unsteady benchmark. CFD results in this manuscript are further compared with the in vivo physiological CPB pressure waveforms and demonstrated excellent agreement. Cannula inlet flow waveforms are measured from in vivo PC-MRI and 3 kg piglet neonatal animal model physiological experiments, distributed equally between the head-neck vessels and the descending aorta. Neonatal 3D aortic hemodynamics is also compared with that of the pediatric and fetal aortic stages. Detailed 3D flow fields, blood damage, wall shear stress (WSS), pressure drop, perfusion, and hemodynamic parameters describing the pulsatile energetics are calculated for both the physiological neonatal aorta and for the CPB aorta assembly. The primary flow structure is the high-speed canulla jet flow (3.0m/s at peak flow), which eventually stagnates at the anterior aortic arch wall and low velocity flow in the cross-clamp pouch. These structures contributed to the reduced flow pulsatility (85%), increased WSS (50%), power loss (28%), and blood damage (288%), compared with normal neonatal aortic physiology. These drastic hemodynamic differences and associated intense biophysical loading of the pathological CPB configuration necessitate urgent bioengineering improvements—in hardware design, perfusion flow waveform, and configuration. This study serves to document the baseline condition, while the methodology presented can be utilized in preliminary CPB cannula design and in optimization studies reducing animal experiments. Coupled to a lumped-parameter model the 3D hemodynamic characteristics will aid the surgical decision making process of the perfusion strategies in complex congenital heart surgeries.

1.
Ungerleider
,
R. M.
, 2005, “
Practice Patterns in Neonatal Cardiopulmonary Bypass
,”
ASAIO J.
,
51
(
6
), pp.
813
815
. 1058-2916
2.
Papantchev
,
V.
,
Hristov
,
S.
,
Todorova
,
D.
,
Naydenov
,
E.
,
Paloff
,
A.
,
Nikolov
,
D.
, and
Tschirkov
,
A. O. W.
, 2007, “
Some Variations of the Circle of Willis, Important for Cerebral Protection in Aortic Surgery—A Study in Eastern Europeans
,”
Eur. J. Cardiothorac Surg.
,
31
(
6
), pp.
982
989
. 1010-7940
3.
Schumacher
,
J.
,
Eichler
,
W.
,
Heringlake
,
M.
,
Sievers
,
H. H.
, and
Klotz
,
K. F.
, 2004, “
Intercompartmental Fluid Volume Shifts During Cardiopulmonary Bypass Measured by A-Mode Ultrasonography
,”
Perfusion
,
19
(
5
), pp.
277
281
. 0267-6591
4.
Ündar
,
A.
,
Vaughn
,
W. K.
, and
Calhoon
,
J. H.
, 2000, “
The Effects of Cardiopulmonary Bypass and Deep Hypothermic Circulatory Arrest on Blood Viscoelasticity and Cerebral Blood Flow in a Neonatal Piglet Model
,”
Perfusion
0267-6591,
15
(
2
), pp.
121
128
.
5.
Ündar
,
A.
,
Koenig
,
K. M.
,
Frazier
,
O. H.
, and
Fraser
,
C. D.
, 2000, “
Impact of Membrane Oxygenators on Pulsatile Versus Nonpulsatile Perfusion in a Neonatal Model
,”
Perfusion
,
15
, pp.
111
120
. 0267-6591
6.
Travis
,
A. R.
,
Giridharan
,
G. R.
,
Pantalos
,
G. M.
,
Dowling
,
R. D.
,
Prabhu
,
S. D.
,
Slaughter
,
M. S.
,
Sobieski
,
M.
,
Undar
,
A.
,
Farrar
,
D. J.
, and
Koenig
,
S. C.
, 2007, “
Vascular Pulsatility in Patients With a Pulsatile- or Continuous-Flow Ventricular Assist Device
,”
J. Thorac. Cardiovasc. Surg.
,
133
(
2
), pp.
517
523
. 0022-5223
7.
Hetzer
,
R.
,
Loebe
,
M.
,
Potapov
,
E. V.
,
Weng
,
Y.
,
Stiller
,
B.
,
Hennig
,
E.
,
Alexi-Meskishvili
,
V.
, and
Lange
,
P. E.
, 1998, “
Circulatory Support With Pneumatic Paracorporeal Ventricular Assist Device in Infants and Children
,”
Ann. Thorac. Surg.
,
66
, pp.
1498
1506
. 0003-4975
8.
Konertz
,
W.
,
Hotz
,
H.
,
Schneider
,
M.
,
Redlin
,
M.
, and
Reul
,
H.
, 1997, “
Clinical Experience With the MEDOS HIA-VAD System in Infants and Children: A Preliminary Report
,”
Ann. Thorac. Surg.
,
63
, pp.
1138
1144
. 0003-4975
9.
Skinner
,
S. C.
,
Hirschl
,
R. B.
, and
Bartlett
,
R. H.
, 2006, “
Extracorporeal Life Support
,”
Semin Pediatr. Surg.
,
15
(
4
), pp.
242
250
. 1055-8586
10.
Hetzer
,
R.
,
Potapov
,
E. V.
,
Stiller
,
B.
,
Weng
,
Y.
,
Hübler
,
M.
,
Lemmer
,
J.
,
Alexi-Meskishvili
,
V.
,
Redlin
,
M.
,
Merkle
,
F.
,
Kaufmann
,
F.
, and
Hennig
,
E.
, 2006, “
Improvement in Survival After Mechanical Circulatory Support With Pneumatic Pulsatile Ventricular Assist Devices in Pediatric Patients
,”
Ann. Thorac. Surg.
,
82
, pp.
917
925
. 0003-4975
11.
Ündar
,
A.
, 2002, “
The ABCs of Research on Pulsatile Versus Nonpulsatile Perfusion During Cardiopulmonary Bypass
,”
Med. Sci. Monit.
,
8
(
12
), pp.
ED21
4
. 1234-1010
12.
Undar
,
A.
,
Masai
,
T.
,
Beyer
,
E. A.
,
Goddard-Finegold
,
J.
,
McGarry
,
M. C.
, and
Fraser
,
C. D.
, 2002, “
Pediatric Physiologic Pulsatile Pump Enhances Cerebral and Renal Blood Flow During and After Cardiopulmonary Bypass
,”
Artif. Organs
,
26
(
11
), pp.
919
923
. 0160-564X
13.
Mavroudis
,
C.
, 1978, “
To Pulse or not to Pulse
,”
Ann. Thorac. Surg.
,
25
(
3
), pp.
259
271
. 0003-4975
14.
Ji
,
B.
, and
Undar
,
A.
, 2007, “
Precise Quantification of Pressure-Flow Waveforms During Pulsatile and Nonpulsatile Perfusion
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
133
(
5
), p.
1395
.
15.
Weiss
,
W. J.
,
Lukic
,
B.
, and
Ündar
,
A.
, 2005, “
Energy Equivalent Pressure and Total Hemodynamic Energy Associated With the Pressure-Flow Waveforms of a Pediatric Pulsatile Ventricular Assist Device
,”
ASAIO J.
,
51
(
5
), pp.
614
617
. 1058-2916
16.
Ündar
,
A.
,
Owens
,
R. W.
,
McGarry
,
M. C.
,
Surprise
,
D. L.
,
Kilpack
,
V. D.
,
Mueller
,
M. W.
,
McKenzie
,
E. D.
, and
Fraser
,
C. D.
, 2005, “
Comparison of Hollow-Fiber Membrane Oxygenators in Terms of Pressure Drop of the Membranes During Normothermic and Hypothermic Cardiopulmonary Bypass in Neonates
,”
Perfusion
,
20
, pp.
135
138
. 0267-6591
17.
Ündar
,
A.
,
Lodge
,
A. J.
,
Daggett
,
C. W.
,
Runge
,
T. M.
,
Ungerleider
,
R. M.
, and
Calhoon
,
J. H.
, 1998, “
The Type of Aortic Cannula and Membrane Oxygenator Affect the Pulsatile Waveform Morphology Produced by a Neonate-Infant Cardiopulmonary Bypass System In Vivo
,”
Artif. Organs
,
22
(
8
), pp.
681
686
. 0391-3988
18.
Gu
,
Y. J.
,
De Kroon
,
T. L.
,
Elstrodt
,
J. M.
,
van Oeveren
,
W.
,
Boonstra
,
P. W.
, and
Rakhorst
,
G.
, 2005, “
Augmentation of Abdominal Organ Perfusion During Cardiopulmonary Bypass With a Novel Intra-Aortic Pulsatile Catheter Pump
,”
Int. J. Artif. Organs
,
28
(
1
), pp.
35
43
. 0391-3988
19.
Kaps
,
M.
,
Haase
,
A.
,
Mulch
,
J.
,
Stertmann
,
W. A.
, and
Thiel
,
A.
, 1989, “
Pulsatile Flow Pattern in Cerebral Arteries During Cardiopulmonary Bypass. An Evaluation Based on Transcranial Doppler Ultrasound
,”
J. Cardiovasc. Surg.
,
30
(
1
), pp.
16
19
. 0021-9509
20.
Harrington
,
D. K.
,
Fragomeni
,
F.
, and
Bonser
,
R. S.
, 2007, “
Cerebral Perfusion
,”
Ann. Thorac. Surg.
,
83
(
2
), pp.
S799
804
. 0003-4975
21.
Ündar
,
A.
,
Masai
,
T.
,
Yang
,
S.
,
Goddard-Finegold
,
J.
,
Frazier
,
O. H.
, and
Fraser
,
C. D.
, 1999, “
Effects of Perfusion Mode on Regional and Global Organ Blood Flow in a Neonatal Piglet Model
,”
Ann. Thorac. Surg.
,
68
, pp.
1336
1343
. 0003-4975
22.
May-Newman
,
K. D.
,
Hillen
,
B. K.
,
Sironda
,
C. S.
, and
Dembitsky
,
W.
, 2004, “
Effect of LVAD Outflow Conduit Insertion Angle on Flow Through the Native Aorta
,”
J. Med. Eng. Technol.
,
28
(
3
), pp.
105
109
. 0309-1902
23.
May-Newman
,
K.
,
Hillen
,
B.
, and
Dembitsky
,
W.
, 2006, “
Effect of Left Ventricular Assist Device Outflow Conduit Anastomosis Location on Flow Patterns in the Native Aorta
,”
ASAIO J.
1058-2916,
52
(
2
), pp.
132
139
.
24.
Torii
,
R.
,
Wood
,
N. B.
,
Hughes
,
A. D.
,
Thom
,
S. A.
,
Aguado-Sierra
,
J.
,
Davies
,
J. E.
,
Francis
,
D. P.
,
Parker
,
K. H.
, and
Xu
,
X. Y.
, 2007, “
A Computational Study on the Influence of Catheter-Delivered Intravascular Probes on Blood Flow in a Coronary Artery Model
,”
J. Biomech.
,
40
(
11
), pp.
2501
2509
. 0021-9290
25.
Park
,
J. Y.
,
Park
,
C. Y.
, and
Min
,
B. G.
, 2007, “
A Numerical Study on the Effect of Side Hole Number and Arrangement in Venous Cannulae
,”
J. Biomech.
,
40
(
5
), pp.
1153
1157
. 0021-9290
26.
Andersen
,
M. N.
,
Ringgaard
,
S.
,
Hasenkam
,
J. M.
, and
Nygaard
,
H.
, 2004, “
Quantitative Hemodynamic Evaluation of Aortic Cannulas
,”
Perfusion
,
19
(
5
), pp.
323
330
. 0267-6591
27.
Foust
,
J.
, and
Rockwell
,
D.
, 2006, “
Structure of the Jet From a Generic Catheter Tip
,”
Exp. Fluids
0723-4864,
41
, pp.
543
558
.
28.
Pekkan
,
K.
,
Kitajima
,
H.
,
Forbess
,
J.
,
Fogel
,
M.
,
Kanter
,
K.
,
Parks
,
J. M.
,
Sharma
,
S.
, and
Yoganathan
,
A. P.
, 2005, “
Total Cavopulmonary Connection Flow With Functional Left Pulmonary Artery Stenosis—Fenestration and Angioplasty In Vitro
,”
Circulation
,
112
(
21
), pp.
3264
3271
. 0009-7322
29.
de Zélicourt
,
D.
,
Pekkan
,
K.
,
Parks
,
W. J.
,
Kanter
,
K.
,
Fogel
,
M.
, and
Yoganathan
,
A. P.
, 2006, “
Flow Study of an Extra-Cardiac Connection With Persistent Left Superior Vena Cava
,”
J. Thorac. Cardiovasc. Surg.
,
131
(
4
), pp.
785
791
. 0022-5223
30.
Pekkan
,
K.
,
Whited
,
B.
,
Kanter
,
K.
,
Sharma
,
S.
,
de Zélicourt
,
D.
,
Sundareswaran
,
K.
,
Frakes
,
D.
,
Rossignac
,
J.
, and
Yoganathan
,
A. P.
, 2008, “
Patient Specific Surgical Planning and Hemodynamic Computational Fluid Dynamics Optimization Through Free-Form Haptic Anatomy Editing Tool (SURGEM)
,”
Med. Biol. Eng. Comput.
0140-0118, to be published.
31.
Caro
,
C. G.
,
Pedley
,
T. J.
,
Schroter
,
R. C.
, and
Seed
,
W. A.
, 1978,
The Mechanics of the Circulation
,
Oxford University Press
,
Oxford
.
32.
McDonald
,
D. A.
, 1974,
Blood Flow in Arteries
,
Edwards
,
Ann Arbor, MI
/
Arnold
,
London
.
33.
Fung
,
Y. C.
, 1984,
Biodynamics: Circulation
,
Springer
,
New York
.
34.
Mori
,
D.
, and
Yamaguchi
,
T.
, 2002, “
Computational Fluid Dynamics Modeling and Analysis of the Effect of 3-D Distortion of the Human Aortic Arch
,”
Comput. Methods Biomech. Biomed. Eng.
,
5
(
3
), pp.
249
260
. 1025-5842
35.
Nakamura
,
M.
,
Wada
,
S.
, and
Yamaguchi
,
T.
, 2006, “
Computational Analysis of Blood Flow in an Integrated Model of the Left Ventricle and the Aorta
,”
J. Biomech. Eng.
0148-0731,
128
, pp.
837
843
.
36.
Morris
,
L.
,
Delassus
,
P.
,
Callanan
,
A.
,
Walsh
,
M.
,
Wallis
,
F.
,
Grace
,
P.
, and
McGloughlin
,
T.
, 2005, “
3-D Numerical Simulation of Blood Flow Through Models of the Human Aorta
,”
J. Biomech. Eng.
0148-0731,
127
, pp.
767
775
.
37.
Wood
,
N. B.
,
Weston
,
S. J.
,
Kilner
,
P. J.
,
Gosman
,
A. D.
, and
Firmin
,
D. N.
, 2001, “
Combined MR Imaging and CFD Simulation of Flow in the Human Descending Aorta
,”
J. Magn. Reson Imaging
,
13
(
5
), pp.
699
713
. 1053-1807
38.
Leuprecht
,
A.
,
Kozerke
,
S.
,
Boesiger
,
P.
, and
Perktold
,
K.
, 2003, “
Blood Flow in the Human Ascending Aorta: A Combined MRI and CFD Study
,”
J. Eng. Math.
,
47
, pp.
387
404
. 0022-0833
39.
Jin
,
S.
,
Oshinski
,
J.
, and
Giddens
,
D. P.
, 2003, “
Effects of Wall Motion and Compliance on Flow Patterns in the Ascending Aorta
,”
J. Biomech. Eng.
0148-0731,
125
(
3
), pp.
347
354
.
40.
Suo
,
J.
, 2005, “
Investigation of Blood Flow Patterns and Hemodynamics in the Human Ascending Aorta and Major Trunks of Right and Left Coronary Arteries Using Magnetic Resonance Imaging and Computational Fluid Dynamics
,”
Georgia Institute of Technology
, Atlanta, GA.
41.
Shahcheraghi
,
N.
,
Dwyer
,
H. A.
,
Cheer
,
A. Y.
,
Barakat
,
A. I.
, and
Rutaganira
,
T.
, 2002, “
Unsteady and Three-Dimensional Simulation of Blood Flow in the Human Aortic Arch
,”
J. Biomech. Eng.
0148-0731,
124
(
4
), pp.
378
387
.
42.
Feintuch
,
A.
,
Ruengsakulrach
,
P.
,
Lin
,
A.
,
Zhang
,
J.
,
Zhou
,
Y. Q.
,
Bishop
,
J.
,
Davidson
,
L.
,
Courtman
,
D.
,
Foster
,
F. S.
,
Steinman
,
D. A.
,
Henkelman
,
R. M.
, and
Ethier
,
C. R.
, 2006, “
Hemodynamics in the Mouse Aortic Arch as Assessed by MRI, Ultrasound, and Numerical Modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
,
292
(
2
), pp.
H884
892
. 0363-6135
43.
Jin
,
S.
,
Ferrara
,
D. E.
,
Sorescu
,
D.
,
Guldberg
,
R. E.
,
Taylor
,
W. R.
, and
Giddens
,
D. P.
, 2007, “
Hemodynamic Shear Stresses in Mouse Aortas: Implications for Atherogenesis
,”
Arterioscler., Thromb., Vasc. Biol.
,
27
(
2
), pp.
346
351
. 1079-5642
44.
Pekkan
,
K.
,
Dasi
,
L. P.
,
Nourparvar
,
P.
,
Yerneni
,
S.
,
Tobita
,
K.
,
Fogel
,
M. A.
,
Keller
,
B.
, and
Yoganathan
,
A.
, 2008, “
In Vitro Hemodynamic Investigation of the Embryonic Aortic Arch at Late Gestation
,”
J. Biomech.
,
41
(
8
), pp.
1697
1706
. 0021-9290
45.
Deplano
,
V.
,
Knapp
,
Y.
,
Bertrand
,
E.
, and
Gaillard
,
E.
, 2007, “
Flow Behaviour in an Asymmetric Compliant Experimental Model for Abdominal Aortic Aneurysm
,”
J. Biomech.
,
40
(
11
), pp.
2406
2413
. 0021-9290
46.
Di Martino
,
E. S.
,
Guadagni
,
G.
,
Fumero
,
A.
,
Ballerini
,
G.
,
Spirito
,
R.
,
Biglioli
,
P.
, and
Redaelli
,
A.
, 2001, “
Fluid-Structure Interaction Within Realistic Three-Dimensional Models of the Aneurysmatic Aorta as a Guidance to Assess the Risk of Rupture of the Aneurysm
,”
Med. Eng. Phys.
1350-4533,
23
(
9
), pp.
647
655
.
47.
Kleinstreuer
,
C.
,
Li
,
Z.
, and
Farber
,
M. A.
, 2007, “
Fluid-Structure Interaction Analyses of Stented Abdominal Aortic Aneurysms
,”
Annu. Rev. Biomed. Eng.
,
9
, pp.
169
204
. 1523-9829
48.
Papaharilaou
,
Y.
,
Ekaterinaris
,
J. A.
,
Manousaki
,
E.
, and
Katsamouris
,
A. N.
, 2007, “
A Decoupled Fluid Structure Approach for Estimating Wall Stress in Abdominal Aortic Aneurysms
,”
J. Biomech.
0021-9290,
40
(
2
), pp.
367
377
.
49.
Valencia
,
A. A.
,
Guzman
,
A. M.
,
Finol
,
E. A.
, and
Amon
,
C. H.
, 2006, “
Blood Flow Dynamics in Saccular Aneurysm Models of the Basilar Artery
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
4
), pp.
516
526
.
50.
Ettinger
,
S. J.
, 1975,
Textbook of Veterinary Internal Medicine
,
Saunders
,
Philadelphia, PA
.
51.
Capps
,
S. B.
,
Elkins
,
R. C.
, and
Fronk
,
D. M.
, 2000, “
Body Surface Area as a Predictor of Aortic and Pulmonary Valve Diameter
,”
J. Thorac. Cardiovasc. Surg.
,
119
(
5
), pp.
975
982
. 0022-5223
52.
Fitzgerald
,
S. W.
,
Donaldson
,
J. S.
, and
Poznanski
,
A. K.
, 1987, “
Pediatric Thoracic Aorta: Normal Measurements Determined With CT
,”
Radiology
,
165
(
3
), pp.
667
669
. 0033-8419
53.
Tan
,
J.
,
Silverman
,
N. H.
,
Hoffman
,
J. I.
,
Villegas
,
M.
, and
Schmidt
,
K. G.
, 1992, “
Cardiac Dimensions Determined by Cross-Sectional Echocardiography in the Normal Human Fetus From 18 Weeks to Term
,”
Am. J. Cardiol.
,
70
(
18
), pp.
1459
1467
. 0002-9149
54.
Poutanen
,
T.
,
Tikanoja
,
T.
,
Sairanen
,
H.
, and
Jokinen
,
E.
, 2003, “
Normal Aortic Dimensions and Flow in 168 Children and Young Adults
,”
Clin. Physiol. Funct. Imaging
,
23
(
4
), pp.
224
229
.
55.
Frakes
,
D. H.
,
Conrad
,
C. P.
,
Healy
,
T. M.
,
Monaco
,
J. W.
,
Fogel
,
M.
,
Sharma
,
S.
,
Smith
,
M. J.
, and
Yoganathan
,
A. P.
, 2003, “
Application of an Adaptive Control Grid Interpolation Technique to Morphological Vascular Reconstruction
,”
IEEE Trans. Biomed. Eng.
0018-9294,
50
(
2
), pp.
197
206
.
56.
Pekkan
,
K.
,
Zelicourt
,
D.
,
Ge
,
L.
,
Sotiropoulos
,
F.
,
Frakes
,
D.
,
Fogel
,
M.
, and
Yoganathan
,
A.
, 2005, “
Physics-Driven CFD Modeling of Complex Anatomical Cardiovascular Flows—A TCPC Case Study
,”
Ann. Biomed. Eng.
0090-6964,
33
(
3
), pp.
284
300
.
57.
Whitehead
,
K. K.
,
Pekkan
,
K.
,
Kitajima
,
H. D.
,
Paridon
,
S. M.
,
Yoganathan
,
A. P.
, and
Fogel
,
M. A.
, 2007 “
Non-Linear Power Loss During Exercise in Single-Ventricle Patients After the Fontan: Insights From Computational Fluid Dynamics
,”
Circulation
,
116
, pp.
I
-165–I-
171
0009-7322
58.
Frakes
,
D. H.
,
Smith
,
M. J.
,
Parks
,
J.
,
Sharma
,
S.
,
Fogel
,
S. M.
, and
Yoganathan
,
A. P.
, 2005, “
New Techniques for the Reconstruction of Complex Vascular Anatomies From MRI Images
,”
J. Cardiovasc. Magn. Reson.
,
7
(
2
), pp.
425
432
.
59.
Chen
,
H. Y.
,
Einstein
,
D. R.
,
Chen
,
K.
, and
Vesely
,
I.
, 2005, “
Computational Modeling of Vascular Clamping: A Step Toward Simulating Surgery
,”
Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference
,
Shanghai, China
, Sep. 1–4.
60.
Rossignac
,
J.
,
Pekkan
,
K.
,
Whited
,
B.
,
Kanter
,
K.
,
Sharma
,
S.
, and
Yoganathan
,
A.
, 2006, “
Surgem: Next Generation CAD Tools for Interactive Patient-Specific Surgical Planning and Hemodynamic Analysis
,”
Georgia Institute of Technology
, Atlanta, GA.
61.
Wang
,
C.
,
Pekkan
,
K.
,
de Zélicourt
,
D.
,
Horner
,
M.
,
Parihar
,
A.
,
Kulkarni
,
A.
, and
Yoganathan
,
A. P.
, 2007, “
Progress in the CFD Modeling of Flow Instability in Anatomical Total Cavopulmonary Connections
,”
Ann. Biomed. Eng.
,
35
(
11
), pp.
1840
1856
. 0009-7322
62.
Salim
,
M. A.
,
DiSessa
,
T. G.
,
Arheart
,
K. L.
, and
Alpert
,
B. S.
, 1995, “
Contribution of Superior Vena Caval Flow to Total Cardiac Output in Children. A Doppler Echocardiographic Study
,”
Circulation
,
92
(
7
), pp.
1860
1865
. 0009-7322
63.
Fischer
,
P. F.
,
Loth
,
F.
,
Lee
,
S. E.
,
Lee
,
S.
,
Smith
,
D. S.
, and
Bassiouny
,
H. S.
, 2007, “
Simulation of High-Reynolds Number Vascular Flows
,”
Comput. Methods Biomech. Biomed. Eng.
,
196
, pp.
3049
3060
. 1025-5842
64.
Fogel
,
M. A.
,
Weinberg
,
P. M.
,
Rychik
,
J.
,
Hubbard
,
A.
,
Jacobs
,
M.
,
Spray
,
T. L.
, and
Haselgrove
,
J.
, 1999, “
Caval Contribution to Flow in the Branch Pulmonary Arteries of Fontan Patients With a Novel Application of Magnetic Resonance Presaturation Pulse
,”
Circulation
,
99
(
9
), pp.
1215
1221
. 0009-7322
65.
Undar
,
A.
,
Masai
,
T.
,
Yang
,
S. Q.
,
Eichstaedt
,
H. C.
,
McGarry
,
M. C.
,
Vaughn
,
W. K.
,
Goddard-Finegold
,
J.
, and
Fraser
,
C. D.
, Jr.
, 2001, “
Global and Regional Cerebral Blood Flow in Neonatal Piglets Undergoing Pulsatile Cardiopulmonary Bypass With Continuous Perfusion at 25 Degrees C and Circulatory Arrest at 18 Degrees C
,”
Perfusion
,
16
(
6
), pp.
503
510
. 0267-6591
66.
Undar
,
A.
, 2003, “
Universal and Precise Quantification of Pulsatile and Nonpulsatile Pressure Flow Waveforms is Necessary for Direct and Adequate Comparisons Among the Results of Different Investigators
,”
Perfusion
,
18
(
2
), pp.
135
136
. 0267-6591
67.
Healy
,
T. M.
,
Lucas
,
C.
, and
Yoganathan
,
A. P.
, 2001, “
Noninvasive Fluid Dynamic Power Loss Assessments for Total Cavopulmonary Connections Using the Viscous Dissipation Function: A Feasibility Study
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
4
), pp.
317
324
.
68.
Venkatachari
,
A. K.
,
Halliburton
,
S. S.
,
Setser
,
R. M.
,
White
,
R. D.
, and
Chatzimavroudis
,
G. P.
, 2007, “
Noninvasive Quantification of Fluid Mechanical Energy Losses in the Total Cavopulmonary Connection With Magnetic Resonance Phase Velocity Mapping
,”
Magn. Reson. Imaging
,
25
(
1
), pp.
101
109
. 0730-725X
69.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
, 1990, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses-In Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
(
5
), pp.
300
306
. 0391-3988
70.
Farinas
,
M. I.
,
Garon
,
A.
,
Lacasse
,
D.
, and
N’Dri
,
D.
, 2006, “
Asymptotically Consistent Numerical Approximation of Hemolysis
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
5
), pp.
688
696
.
71.
Garon
,
A.
, and
Farinas
,
M. I.
, 2004, “
Fast Three-Dimensional Numerical Hemolysis Approximation
,”
Artif. Organs
0160-564X,
28
(
11
), pp.
1016
1025
.
72.
Arora
,
D.
,
Behr
,
M.
, and
Pasquali
,
M.
, 2004, “
A Tensor-Based Measure for Estimating Blood Damage
,”
Artif. Organs
0160-564X,
28
(
11
), pp.
1002
1015
.
73.
Arvand
,
A.
,
Hormes
,
M.
, and
Reul
,
H.
, 2005, “
A Validated Computational Fluid Dynamics Model to Estimate Hemolysis in a Rotary Blood Pump
,”
Artif. Organs
,
29
(
7
), pp.
531
540
. 0160-564X
74.
Austin
,
E. H.
, 2007, “
Neuromonitoring During Pediatric Cardiopulmonary Bypass
,”
Proceedings of the Third International Conference on Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary Perfusion
,
Heshey, PA
, May 17–19.
75.
Pekkan
,
K.
,
Frakes
,
D.
,
De Zelicourt
,
D.
,
Lucas
,
C. W.
,
Parks
,
W. J.
, and
Yoganathan
,
A. P.
, 2005, “
Coupling Pediatric Ventricle Assist Devices to the Fontan Circulation: Simulations With a Lumped-Parameter Model
,”
ASAIO J.
,
51
(
5
), pp.
618
628
. 1058-2916
76.
Moore
,
S.
,
David
,
T.
,
Chase
,
J. G.
,
Arnold
,
J.
, and
Fink
,
J.
, 2006, “
3D Models of Blood Flow in the Cerebral Vasculature
,”
J. Biomech.
0021-9290,
39
(
8
), pp.
1454
1463
.
77.
Bakhtiary
,
F.
,
Dogan
,
S.
,
Risteski
,
P.
,
Ackermann
,
H.
,
Oezaslan
,
F.
,
Kleine
,
P.
,
Moritz
,
A.
, and
Aybek
,
T.
, 2007, “
Mild Hypothermic (30C) Body Perfusion During Replacement of the Aortic Arch With a Novel Arterial Perfusion Cannula
,”
J. Thorac. Cardiovasc. Surg.
,
133
(
6
), pp.
1637
1639
. 0022-5223
78.
Orihashi
,
K.
,
Matsuura
,
Y.
,
Sueda
,
T.
,
Watari
,
M.
,
Okada
,
K.
,
Sugawara
,
Y.
, and
Ishii
,
O.
, 2000, “
Aortic Arch Branches Are no Longer a Blind Zone for Transesophageal Echocardiography: A New Eye for Aortic Surgeons
,”
J. Thorac. Cardiovasc. Surg.
,
120
(
3
), pp.
466
472
. 0022-5223
79.
Yeh
,
T.
, Jr.
,
Austin
,
E. H.
, III
,
Sehic
,
A.
, and
Edmonds
,
H. L.
, Jr.
, 2003, “
Rapid Recognition and Treatment of Cerebral Air Embolism: The Role of Neuromonitoring
,”
J. Thorac. Cardiovasc. Surg.
,
126
(
2
), pp.
589
591
. 0022-5223
80.
Fogel
,
M. A.
,
Weinberg
,
P. M.
, and
Haselgrove
,
J.
, 2002, “
Nonuniform Flow Dynamics in the Aorta of Normal Children: A Simplified Approach to Measurement Using Magnetic Resonance Velocity Mapping
,”
J. Magn. Reson Imaging
,
15
(
6
), pp.
672
678
. 1053-1807
81.
Fogel
,
M. A.
,
Weinberg
,
P. M.
, and
Haselgrove
,
J.
, 2003, “
Flow Volume Asymmetry in the Right Aortic Arch in Children With Magnetic Resonance Phase Encoded Velocity Mapping
,”
Am. Heart J.
,
145
(
1
), pp.
154
161
. 0002-8703
82.
Stein
,
P. D.
, and
Sabbah
,
H. N.
, 1976, “
Turbulent Blood Flow in the Ascending Aorta of Humans With Normal and Diseased Aortic Valves
,”
Circ. Res.
,
39
(
1
), pp.
58
65
. 0009-7330
83.
Ku
,
D. N.
, 1997, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
399
434
.
84.
Lee
,
S. W.
, and
Steinman
,
D. A.
, 2007, “
On the Relative Importance of Rheology for Image-Based CFD Models of the Carotid Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
2
), pp.
273
278
.
85.
Hager
,
A.
,
Kaemmerer
,
H.
,
Rapp-Bernhardt
,
U.
,
Blucher
,
S.
,
Rapp
,
K.
,
Bernhardt
,
T. M.
,
Galanski
,
M.
, and
Hess
,
J.
, 2002, “
Diameters of the Thoracic Aorta Throughout Life as Measured With Helical Computed Tomography
,”
J. Thorac. Cardiovasc. Surg.
,
123
(
6
), pp.
1060
1066
. 0022-5223
86.
Osborn
,
A.
, 1999,
Diagnostic Cerebral Angiography
,
Lippincott
,
Philadelphia, PA
/
Williams & Wilkins
,
Baltimore, MD
.
87.
Szpinda
,
M.
, 2007, “
Morphometric Study of the Brachiobicarotid Trunk in Human Fetuses
,”
Ann. Anat. Pathol. (Paris)
,
189
(
6
), pp.
569
574
. 0940-9602
88.
Leuprecht
,
A.
,
Perktold
,
K.
,
Prosi
,
M.
,
Berk
,
T.
,
Trubel
,
W.
, and
Schima
,
H.
, 2002, “
Numerical Study of Hemodynamics and Wall Mechanics in Distal End-to-Side Anastomoses of Bypass Grafts
,”
J. Biomech.
0021-9290,
35
(
2
), pp.
225
236
.
89.
Moayeri
,
M. S.
, and
Zendehbudi
,
G. R.
, 2003, “
Effects of Elastic Property of the Wall on Flow Characteristics Through Arterial Stenoses
,”
J. Biomech.
,
36
(
4
), pp.
525
535
. 0021-9290
90.
Perktold
,
K.
, and
Rappitsch
,
G.
, 1995, “
Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model
,”
J. Biomech.
0021-9290,
28
(
7
), pp.
845
856
.
91.
Cartier
,
M. S.
,
Davidoff
,
A.
,
Warneke
,
L. A.
,
Hirsh
,
M. P.
,
Bannon
,
S.
,
Sutton
,
M. S.
, and
Doubilet
,
P. M.
, 1987, “
The Normal Diameter of the Fetal Aorta and Pulmonary Artery: Echocardiographic Evaluation in Utero
,”
AJR, Am. J. Roentgenol.
,
149
(
5
), pp.
1003
1007
. 0361-803X
92.
Struijk
,
P. C.
,
Wladimiroff
,
J. W.
,
Hop
,
W. C.
, and
Simonazzi
,
E.
, 1992, “
Pulse Pressure Assessment in the Human Fetal Descending Aorta
,”
Ultrasound Med. Biol.
,
18
(
1
), pp.
39
43
. 0301-5629
93.
Studinger
,
P.
,
Lenard
,
Z.
,
Reneman
,
R.
, and
Kollai
,
M.
, 2000, “
Measurement of Aortic Arch Distension Wave With the Echo-Track Technique
,”
Ultrasound Med. Biol.
,
26
(
8
), pp.
1285
1291
. 0301-5629
94.
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
, 2007, “
Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
4
), pp.
611
618
.
95.
Zhao
,
S.
,
Xu
,
X.
, and
Collins
,
M.
, 1998, “
The Numerical Analysis of Fluid-Solid Interactions for Blood Flow in Arterial Structures Part 1: A Review of Models for Arterial Wall Behavior
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
212
, pp.
229
240
.
96.
Bessems
,
D.
,
Giannopapa
,
C. G.
,
Rutten
,
M. C.
, and
van de Vosse
,
F. N.
, 2008, “
Experimental Validation of a Time-Domain-Based Wave Propagation Model of Blood Flow in Viscoelastic Vessels
,”
J. Biomech.
,
41
(
2
), pp.
284
291
. 0021-9290
You do not currently have access to this content.