In the present study a direct comparison was made between in vitro total hip wear testing and a computational analysis considering the effects of time and a nonlinear stress-strain relationship for ultrahigh molecular weight polyethylene (UHMWPE) at 37°C. The computational simulation was made correct through calibration to experimental volumetric wear results, and the predicted damage layout on the acetabular liner surface was compared with results estimated from laser scanning of the actual worn specimens. The wear rates for the testing specimens were found to be 17.14±1.23mg/106cycles and 19.39±0.79mg/106cycles, and the cumulative volumetric wear values after 3×106cycles were 63.70mm3 and 64.02mm3 for specimens 1 and 2, respectively. The value of the calibrated wear coefficient was found to be 5.32(1010)mm3/Nmm for both specimens. The major difference between the computational and experimental wear results was the existence of two damage vectors in the experimental case. The actual location of damage was virtually the same in both cases, and the maximum damage depth of the computational model agreed well with the experiment. The existence of multiple wear vectors may indicate the need for computational approaches to account for multidirectional sliding or strain hardening of UHMWPE. Despite the limitation in terms of describing the overall damage layout, the present computational model shows that simulation can mimic some of the behavior of in vitro wear.

1.
Goswami
,
T.
, and
Sargeant
,
A.
, 2006, “
Hip Implants: Paper V. Physiological Effects
,”
Mater. Des.
,
27
(
4
), pp.
287
307
. 0264-1275
2.
Shanbhag
,
A. S.
,
Sethi
,
M. K.
, and
Rubash
,
H. E.
, 2007, “
Biological Response to Wear Debris: Cellular Interaction Causing Osteolysis
,”
The Adult Hip
,
J. J.
Callaghan
,
A. G.
Rosenberg
, and
H. E.
Rubash
, eds.,
Lippincott Williams and Wilkins
,
Philadelphia, PA
, Vol.
1
, pp.
286
299
.
3.
Lundberg
,
H. J.
,
Pedersen
,
D. R.
,
Baer
,
T. E.
,
Muste
,
M.
,
Callaghan
,
J. J.
, and
Brown
,
T. D.
, 2007, “
Effects of Implant Design Parameters on Fluid Convection, Potentiating Third-Body Debris Ingress Into the Bearing Surfaces During THA Impingement/Subluxation
,”
J. Biomech.
,
40
(
8
), pp.
1676
1685
. 0021-9290
4.
Wooley
,
P. H.
, and
Schwarz
,
E. M.
, 2004, “
Aseptic Loosening
,”
Gene Ther.
,
11
, pp.
402
407
. 0969-7128
5.
Harris
,
W. H.
, 1995, “
The Problem is Osteolysis
,”
Clin. Orthop. Relat. Res.
,
311
, pp.
46
53
. 0009-921X
6.
Dumbleton
,
J. H.
,
Manley
,
M. T.
, and
Edidin
,
A. A.
, 2002, “
A Literature Review of the Association Between Wear Rate and Osteolysis in Total Hip Arthroplasty
,”
J. Arthroplasty
,
17
(
5
), pp.
649
661
. 0883-5403
7.
Maxian
,
T. A.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
, and
Callaghan
,
J. J.
, 1996, “
A Sliding-Distance-Coupled Finite Element Formulation for Polyethylene Wear in Total Hip Arthroplasty
,”
J. Biomech.
0021-9290,
29
(
5
), pp.
687
692
.
8.
Maxian
,
T. A.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
, and
Callaghan
,
J. J.
, 1996, “
Adaptive Finite Element Modeling of Long-Term Polyethylene Wear in Total Hip Arthroplasty
,”
J. Orthop. Res.
0736-0266,
14
(
4
), pp.
668
675
.
9.
Maxian
,
T. A.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
, and
Callaghan
,
J. J.
, 1996, “
3-Dimensional Sliding/Contact Computational Simulation of Total Hip Wear
,”
Clin. Orthop. Relat. Res.
0009-921X,
333
, pp.
41
50
.
10.
Maxian
,
T. A.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
,
McKellop
,
H. A.
,
Lu
,
B.
, and
Callaghan
,
J. J.
, 1997, “
Finite Element Analysis of Acetabular Wear: Validation, Backing and Fixation Effects
,”
Clin. Orthop. Relat. Res.
0009-921X,
344
, pp.
111
117
.
11.
Archard
,
J. F.
, 1953, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
0021-8979,
24
(
8
), pp.
981
988
.
12.
Archard
,
J. F.
, 1956, “
The Wear of Metals Under Unlubricated Conditions
,”
Proc. R. Soc. London, Ser. A
,
236
(
1206
), pp.
397
410
. 0370-1662
13.
Marshek
,
K. M.
, and
Chen
,
H. H.
, 1989, “
Discretization Pressure-Wear Theory for Bodies in Sliding Contact
,”
ASME J. Tribol.
,
111
(
1
), pp.
95
100
. 0742-4787
14.
Wu
,
J. S. S.
,
Hung
,
J. P.
,
Shu
,
C. S.
, and
Chen
,
J. H.
, 2003, “
The ComputerSimulation of Wear Behavior Appearing in Total Hip Prosthesis
,”
Comput. Methods Programs Biomed.
,
70
(
1
), pp.
81
91
. 0169-2607
15.
Bevill
,
S. L.
,
Bevill
,
G. R.
,
Penmetsa
,
J. R.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
, 2005, “
Finite Element Simulation of Early Creep and Wear in Total Hip Arthroplasty
,”
J. Biomech.
0021-9290,
38
(
12
), pp.
2365
2374
.
16.
Penmetsa
,
J. R.
,
Laz
,
P. J.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
, 2006, “
Influence of Polyethylene Creep Behavior on Wear in Total Hip Arthroplasty
,”
J. Orthop. Res.
0736-0266,
24
(
3
), pp.
422
427
.
17.
Lee
,
K. Y.
, and
Pienkowski
,
D.
, 1998, “
Compressive Creep Characteristics of Extruded Ultra-High Molecular Weight Polyethylene
,”
J. Biomed. Mater. Res.
0021-9304,
39
(
2
), pp.
261
265
.
18.
ASTM F 1714-96, 1996, “Standard Guide for Gravimetric Wear Assessment of Prosthetic Hip Designs in Simulator Devices.”
19.
Kaddick
,
C.
, and
Wimmer
,
M. A.
, 2001, “
Hip Simulator Wear Testing According to the Newly Introduced Standard ISO 14242
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
215
(
5
), pp.
429
442
.
20.
ISO 14242-1, 2002, “Implants for Surgery—Wear of Total Hip-Joint Prostheses—Part 1: Loading and Displacement Parameters for Wear-Testing Machines and Corresponding Environmental Conditions for Test.”
21.
Altair Engineering, Troy, MI, www.altair.comwww.altair.com.
22.
ANSYS Inc., Canonsburg, PA, www.ansys.comwww.ansys.com.
23.
Cripton
,
P. A.
, 1993, “
Compressive Characterization of Ultra High Molecular Weight Polyethylene With Applications to Contact Stress Analysis of Total Knee Replacements
,” MS thesis, Queen’s University, ON, Canada.
24.
ASTM F648-07e1, “Standard Specification for Ultra-High-Molecular-Weight Polyethylene Powder and Fabricated Form for Surgical Implants.”
25.
D’Lima
,
D. D.
,
Hermida
,
J. C.
,
Chen
,
P. C.
, and
Colwell
,
C. W.
, 2003, “
Polyethylene Cross-Linking by Two Different Methods Reduces Acetabular Liner Wear in a Hip Joint Wear Simulator
,”
J. Orthop. Res.
,
21
(
5
), pp.
761
766
. 0736-0266
26.
Endo
,
M.
,
Tipper
,
J. L.
,
Barton
,
D. C.
,
Stone
,
M. H.
,
Ingham
,
E.
, and
Fisher
,
J.
, 2002, “
Comparison of Wear, Wear Debris and Functional Biological Activity of Moderately Crosslinked and Non-Crosslinked Polyethylenes in Hip Prostheses
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
216
(
2
), pp.
111
122
.
27.
Saikko
,
V.
,
Ahlroos
,
T.
,
Calonius
,
O.
, and
Keranen
,
J.
, 2001, “
Wear Simulation of Total Hip Prostheses With Polyethylene Against CoCr, Alumina and Diamond-Like Carbon
,”
Biomaterials
0142-9612,
22
(
12
), pp.
1507
1514
.
28.
Buford
,
A.
, and
Goswami
,
T.
, 2004, “
Review of Wear Mechanisms in Hip Implants: Paper I – General
,”
Mater. Des.
,
25
(
5
), pp.
385
393
. 0264-1275
29.
Blanchet
,
T. A.
,
Peterson
,
S. L.
, and
Rosenberg
,
K. D.
, 2002, “
Serum Lubricant Absorption by UHMWPE Orthopaedic Bearing Implants
,”
ASME J. Tribol.
0742-4787,
124
(
1
), pp.
1
4
.
30.
Smith
,
S. L.
, and
Unsworth
,
A.
, 1999, “
A Comparison Between Gravimetric and Volumetric Techniques of Wear Measurement of UHMWPE Acetabular Cups Against Zirconia and Cobalt-Chromium-Molybdenum Femoral Heads in a Hip Simulator
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
213
(
6
), pp.
475
483
. 0954-4119
31.
Teoh
,
S. H.
,
Chan
,
W. H.
, and
Thampuran
,
R.
, 2002, “
An Elasto-Plastic Finite Element Model for Polyethylene Wear in Total Hip Arthroplasty
,”
J. Biomech.
0021-9290,
35
(
3
), pp.
323
330
.
32.
Estupiñan
,
J. A.
,
Bartel
,
D. L.
, and
Wright
,
T. M.
, 1998, “
Residual Stresses in Ultra-High Molecular Weight Polyethylene Loaded Cyclically by a Rigid Moving Indenter in Nonconforming Geometries
,”
J. Orthop. Res.
0736-0266,
16
(
1
), pp.
80
88
.
33.
Godest
,
A. C.
,
Beaugonin
,
M.
,
Haug
,
E.
,
Taylor
,
M.
, and
Gregson
,
P. J.
, 2002, “
Simulation of a Knee Joint Replacement During a Gait Cycle Using Explicit Finite Element Analysis
,”
J. Biomech.
0021-9290,
35
(
2
), pp.
267
275
.
34.
Sathasivam
,
S.
, and
Walker
,
P. S.
, 1997, “
A Computer Model With Surface Friction for the Prediction of Total Knee Kinematics
,”
J. Biomech.
0021-9290,
30
(
2
), pp.
177
184
.
35.
Kang
,
L.
,
Galvin
,
A. L.
,
Jin
,
Z. M.
, and
Fisher
,
J.
, 2006, “
A Simple Fully Integrated Contact-Coupled Wear Prediction for Ultra-High Molecular Weight Polyethylene Hip Implants
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
220
(
1
), pp.
33
46
.
36.
Barbour
,
P. S. M.
,
Barton
,
D. C.
, and
Fisher
,
J.
, 1997, “
The Influence of Stress Conditions on the Wear of UHMWPE for Total Joint Replacements
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
8
(
10
), pp.
603
611
.
37.
Kabo
,
J. M.
,
Gebhard
,
J. S.
,
Loren
,
G.
, and
Amstutz
,
H. C.
, 1993, “
In Vivo Wear of Polyethylene Acetabular Components
,”
J. Bone Joint Surg. Br.
0301-620X,
75-B
(
2
), pp.
254
258
.
38.
Yamaguchi
,
M.
,
Hashimoto
,
Y.
,
Akisue
,
T.
, and
Bauer
,
T. W.
, 1999, “
Polyethylene Wear Vector In Vivo: A Three Dimensional Analysis Using Retrieval Acetabular Components and Radiographs
,”
J. Orthop. Res.
,
17
(
5
), pp.
695
702
. 0736-0266
39.
Gevaert
,
M. R.
,
LaBerge
,
M.
,
Gordon
,
J. M.
, and
DesJardins
,
J. D.
, 2005, “
The Quantification of Physiologically Relevant Cross-Shear Wear Phenomena on Orthopaedic Bearing Materials Using the Max-Shear Wear Testing System
,”
ASME J. Tribol.
0742-4787,
127
(
4
), pp.
740
749
.
You do not currently have access to this content.