The sclera is the white outer shell and principal load-bearing tissue of the eye as it sustains the intraocular pressure. We have hypothesized that the mechanical properties of the posterior sclera play a significant role in and are altered by the development of glaucoma—an ocular disease manifested by structural damage to the optic nerve head. An anisotropic hyperelastic constitutive model is presented to simulate the mechanical behavior of the posterior sclera under acute elevations of intraocular pressure. The constitutive model is derived from fiber-reinforced composite theory, and incorporates stretch-induced stiffening of the reinforcing collagen fibers. Collagen fiber alignment was assumed to be multidirectional at local material points, confined within the plane tangent to the scleral surface, and described by the semicircular von Mises distribution. The introduction of a model parameter, namely, the fiber concentration factor, was used to control collagen fiber alignment along a preferred fiber orientation. To investigate the effects of scleral collagen fiber alignment on the overall behaviors of the posterior sclera and optic nerve head, finite element simulations of an idealized eye were performed. The four output quantities analyzed were the scleral canal expansion, the scleral canal twist, the posterior scleral canal deformation, and the posterior laminar deformation. A circumferential fiber organization in the sclera restrained scleral canal expansion but created posterior laminar deformation, whereas the opposite was observed with a meridional fiber organization. Additionally, the fiber concentration factor acted as an amplifying parameter on the considered outputs. The present model simulation suggests that the posterior sclera has a large impact on the overall behavior of the optic nerve head. It is therefore primordial to provide accurate mechanical properties for this tissue. In a companion paper (Girard, Downs, Bottlang, Burgoyne, and Suh, 2009, “Peripapillary and Posterior Scleral Mechanics—Part II: Experimental and Inverse Finite Element Characterization,” ASME J. Biomech. Eng., 131, p. 051012), we present a method to measure the 3D deformations of monkey posterior sclera and extract mechanical properties based on the proposed constitutive model with an inverse finite element method.

1.
Edelhauser
,
H. F.
, and
Ubels
,
J. L.
, 2003, “
The Cornea and the Sclera
,”
Adler’s Physiology of the Eye: Clinical Applications
,
Mosby
,
St. Louis, MO
.
2.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
.
3.
Resnikoff
,
S.
,
Pascolini
,
D.
,
Etya’ale
,
D.
,
Kocur
,
I.
,
Pararajasegaram
,
R.
,
Pokharel
,
G. P.
, and
Mariotti
,
S. P.
, 2004, “
Global Data on Visual Impairment in the Year 2002
,”
Bull. World Health Organ.
,
82
(
11
), pp.
844
851
. 0042-9686
4.
Foster
,
A.
, and
Resnikoff
,
S.
, 2005, “
The Impact of Vision 2020 on Global Blindness
,”
Eye
0950-222X,
19
(
10
), pp.
1133
1135
.
5.
Burgoyne
,
C. F.
,
Downs
,
J. C.
,
Bellezza
,
A. J.
,
Suh
,
J. K.
, and
Hart
,
R. T.
, 2005, “
The Optic Nerve Head as a Biomechanical Structure: A New Paradigm for Understanding the Role of IOP-Related Stress and Strain in the Pathophysiology of Glaucomatous Optic Nerve Head Damage
,”
Prog. Retin. Eye Res.
,
24
(
1
), pp.
39
73
. 1350-9462
6.
Ethier
,
C. R.
, 2006, “
Scleral Biomechanics and Glaucoma—A Connection?
Can. J. Ophthalmol.
0008-4182,
41
(
1
), pp.
9
12
.
7.
Bellezza
,
A. J.
,
Hart
,
R. T.
, and
Burgoyne
,
C. F.
, 2000, “
The Optic Nerve Head as a Biomechanical Structure: Initial Finite Element Modeling
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
41
(
10
), pp.
2991
3000
.
8.
Roberts
,
M. D.
,
Hart
,
R. T.
,
Liang
,
Y.
,
Bellezza
,
A. J.
,
Burgoyne
,
C. F.
, and
Downs
,
J. C.
, 2007, “
Continuum-Level Finite Element Modeling of the Optic Nerve Head Using a Fabric Tensor Based Description of the Lamina Cribrosa
,”
Proceedings of the ASME, Summer Bioengineering Conference
, Keystone, CO.
9.
Downs
,
J. C.
,
Roberts
,
M. D.
,
Burgoyne
,
C. F.
, and
Hart
,
R. T.
, 2007, “
Finite Element Modeling of the Lamina Cribrosa Microarchitecture in the Normal and Early Glaucoma Optic Nerve Head
,”
Proceedings of the ASME, Summer Bioengineering Conference
, Keystone, CO.
10.
Sigal
,
I. A.
,
Flanagan
,
J. G.
, and
Ethier
,
C. R.
, 2005, “
Factors Influencing Optic Nerve Head Biomechanics
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
46
(
11
), pp.
4189
4199
.
11.
Sigal
,
I. A.
,
Flanagan
,
J. G.
,
Tertinegg
,
I.
, and
Ethier
,
C. R.
, 2009, “
Modeling Individual-Specific Human Optic Nerve Head Biomechanics—Part II: Influence of Material Properties
,”
Biomech. Model. Mechanobiol.
1617-7959,
8
(
2
), pp.
85
96
.
12.
Downs
,
J. C.
,
Suh
,
J. K.
,
Thomas
,
K. A.
,
Bellezza
,
A. J.
,
Burgoyne
,
C. F.
, and
Hart
,
R. T.
, 2003, “
Viscoelastic Characterization of Peripapillary Sclera: Material Properties by Quadrant in Rabbit and Monkey Eyes
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
1
), pp.
124
131
.
13.
Downs
,
J. C.
,
Suh
,
J. K.
,
Thomas
,
K. A.
,
Bellezza
,
A. J.
,
Hart
,
R. T.
, and
Burgoyne
,
C. F.
, 2005, “
Viscoelastic Material Properties of the Peripapillary Sclera in Normal and Early-Glaucoma Monkey Eyes
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
46
(
2
), pp.
540
546
.
14.
Girard
,
M.
,
Suh
,
J. K.
,
Hart
,
R. T.
,
Burgoyne
,
C. F.
, and
Downs
,
J. C.
, 2007, “
Effects of Storage Time on the Mechanical Properties of Rabbit Peripapillary Sclera After Enucleation
,”
Curr. Eye Res.
0271-3683,
32
(
5
), pp.
465
470
.
15.
Greene
,
P. R.
, 1980, “
Mechanical Considerations in Myopia: Relative Effects of Accommodation, Convergence, Intraocular Pressure, and the Extraocular Muscles
,”
Am. J. Optom. Physiol. Opt.
0093-7002,
57
(
12
), pp.
902
914
.
16.
Kokott
,
W.
, 1934, “
Das spaltlinienbild der sklera (Ein beitrag zum funktionellen bau der sklera)
,”
Klin. Monatsbl. Augenheilkd.
0023-2165,
92
, pp.
177
185
.
17.
Komai
,
Y.
, and
Ushiki
,
T.
, 1991, “
The Three-Dimensional Organization of Collagen Fibrils in the Human Cornea and Sclera
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
32
(
8
), pp.
2244
2258
.
18.
Rada
,
J. A.
,
Shelton
,
S.
, and
Norton
,
T. T.
, 2006, “
The Sclera and Myopia
,”
Exp. Eye Res.
0014-4835,
82
(
2
), pp.
185
200
.
19.
Girard
,
M. J. A.
,
Downs
,
J. C.
,
Bottlang
,
M.
,
Burgoyne
,
C. F.
, and
Suh
,
J.-K. F.
, 2009, “
Peripapillary and Posterior Scleral Mechanics—Part II: Experimental and Inverse Finite Element Characterization
,”
ASME J. Biomech. Eng.
0148-0731,
131
, p.
051012
.
20.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
, 1996, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
135
, pp.
107
128
.
21.
Spencer
,
A. J. M.
, 1985,
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
,
Springer-Verlag
,
New York
.
22.
Lanir
,
Y.
, 1983, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
0021-9290,
16
(
1
), pp.
1
12
.
23.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
, 2006, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc., Interface
1742-5689,
3
, pp.
15
35
.
24.
Freed
,
A. D.
,
Einstein
,
D. R.
, and
Vesely
,
I.
, 2005, “
Invariant Formulation for Dispersed Transverse Isotropy in Aortic Heart Valves: An Efficient Means for Modeling Fiber Splay
,”
Biomech. Model. Mechanobiol.
1617-7959,
4
(
2–3
), pp.
100
117
.
25.
Driessen
,
N. J.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
, 2005, “
A Structural Constitutive Model for Collagenous Cardiovascular Tissues Incorporating the Angular Fiber Distribution
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
3
), pp.
494
503
.
26.
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Evaluation of Planar Biological Materials
,”
J. Elast.
0374-3535,
61
, pp.
199
246
.
27.
Pinsky
,
P. M.
,
van der Heide
,
D.
, and
Chernyak
,
D.
, 2005, “
Computational Modeling of Mechanical Anisotropy in the Cornea and Sclera
,”
J. Cataract Refractive Surg.
0886-3350,
31
(
1
), pp.
136
145
.
28.
Nguyen
,
T. D.
,
Jones
,
R. E.
, and
Boyce
,
B. L.
, 2008, “
A Nonlinear Anisotropic Viscoelastic Model for the Tensile Behavior of the Corneal Stroma
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
4
), p.
041020
.
29.
Boyce
,
B. L.
,
Jones
,
R. E.
,
Nguyen
,
T. D.
, and
Grazier
,
J. M.
, 2007, “
Stress-Controlled Viscoelastic Tensile Response of Bovine Cornea
,”
J. Biomech.
0021-9290,
40
(
11
), pp.
2367
2376
.
30.
Fisher
,
N. I.
, 1993,
Statistical Analysis of Circular Data
,
Cambridge University Press
,
Cambridge
.
31.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
West Sussex, England
.
32.
Hallquist
,
J. O.
, 1984, “
NIKE3D: An Implicit, Finite-Deformation, Finite Element Code for Analyzing the Static and Dynamic Response of Three-Dimensional Solids
,” University of California, Lawrence Livermore National Laboratory.
33.
Weiss
,
J. A.
, 1994, “
A Constitutive Model and Finite Element Representation for Transversely Isotropic Soft Tissues
,” Ph.D. thesis, University of Utah, Salt Lake.
34.
Simo
,
J. C.
, and
Taylor
,
R. L.
, 1991, “
Quasi-Incompressible Finite Elasticity in Principal Stretches. Continuum Basis and Numerical Algorithms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
85
, pp.
273
310
.
35.
Bonet
,
J.
, and
Wood
,
R. D.
, 1997,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge
.
36.
Ateshian
,
G. A.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
, 2007, “
Equivalence Between Short-Time Biphasic and Incompressible Elastic Material Responses
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
3
), pp.
405
412
.
37.
Girard
,
M. J. A.
,
Downs
,
J. C.
,
Burgoyne
,
C. F.
, and
Suh
,
J. -K. F.
, 2008, “
Experimental Surface Strain Mapping of Porcine Peripapillary Sclera Due to Elevations of Intraocular Pressure
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
4
), p.
041017
.
38.
Levin
,
L. A.
, 2003, “
Optic Nerve
,”
Adler’s Physiology of the Eye: Clinical Applications
,
Mosby
,
St. Louis, MO
.
You do not currently have access to this content.