Ligaments are regularly subjected to repetitive loading in vivo. Typically, mechanical studies focus on repetitive loading protocols of short duration, while those characterizing damage accumulation over a longer duration (i.e., fatigue studies) are lacking. The aims of this study were as follows: (a) to demonstrate that damage does accumulate in ligament tissue subjected to repetitive loading and (b) to evaluate existing and new methods for characterizing fatigue damage accumulation. It was hypothesized that ligaments would accumulate damage with repetitive loading as evidenced by failure at stresses well below ultimate tensile strength, creep curve discontinuities, and by reductions in stiffness during loading. Eight normal medial collateral ligaments from female New Zealand white rabbits were cycled in tension, between 0 MPa and 28 MPa, to failure or until 259,200 cycles, whichever came first. Medial collateral ligaments that did not fail were subsequently loaded to failure. Displacement rates (dlmax/dt) as well as primary, secondary, and tertiary creeps were monitored as indices of damage accumulation and impending mechanical failure. Additionally, the relative utilities of tangent, secant, and chord stiffness parameters were critically evaluated. Finally, new uses for the second derivative of force-displacement data were explored. Three out of eight ligaments failed during testing, demonstrating that ligaments can fail in fatigue under moderate tensile stress in vitro. The evaluation of displacement rates (dlmax/dt), as well as primary through tertiary creep patterns, were not well suited to predicting failure in normal ligaments until rupture was all but imminent. Tangent stiffness, which was calculated from a mathematically defined start of the “linear region,” was surprisingly constant throughout testing. Secant stiffness dropped in a predictable fashion, providing a global indicator of tissue stiffness, but did not provide any insight into fiber mechanics. Chord stiffness, on the other hand, appeared to be sensitive to fiber recruitment patterns. The second derivative of force-displacement data proved to be a useful means of (a) objectively defining the start of the linear region and (b) inferring changes in fiber recruitment patterns within ligament tissue. Tangent, secant, and chord stiffnesses highlight different attributes of ligament responses to loading; hence these parameters cannot be used interchangeably. Additionally, the second derivative of the force-displacement curve was introduced as a useful descriptive and analytical tool.

1.
Gehrmann
,
R. M.
,
DeLuca
,
P. F.
, and
Bartolozzi
,
A. R.
, 2003, “
Humeral Avulsion of the Glenohumeral Ligament Caused by Microtrauma to the Anterior Capsule in an Overhand Throwing Athlete: A Case Report
,”
Am. J. Sports Med.
0363-5465,
31
(
4
), pp.
617
619
.
2.
Schwartz
,
M. L.
, 1998, “
Collateral Ligaments
,”
Semin. Musculoskelet. Radiol.
,
2
(
2
), pp.
155
162
. 1089-7860
3.
Rooks
,
M. D.
, 1997, “
Rock Climbing Injuries
,”
Sports Med.
0112-1642,
23
(
4
), pp.
261
270
.
4.
Rizio
,
L.
, and
Uribe
,
J. W.
, 2001, “
Overuse Injuries of the Upper Extremity in Baseball
,”
Clin. Sports Med.
0278-5919,
20
(
3
), pp.
453
468
.
5.
Patten
,
R. M.
, 1995, “
Overuse Syndromes and Injuries Involving the Elbow: MR Imaging Findings
,”
AJR, Am. J. Roentgenol.
0361-803X,
164
(
5
), pp.
1205
1211
.
6.
Lee
,
M. L.
, and
Rosenwasser
,
M. P.
, 1999, “
Chronic Elbow Instability
,”
Orthop. Clin. North Am.
0030-5898,
30
(
1
), pp.
81
89
.
7.
Eygendaal
,
D.
,
Heijboer
,
M. P.
,
Obermann
,
W. R.
, and
Rozing
,
P. M.
, 2000, “
Medial Instability of the Elbow: Findings on Valgus Load Radiography and MRI in 16 Athletes
,”
Acta Orthop. Scand.
0001-6470,
71
(
5
), pp.
480
483
.
8.
Connell
,
D.
,
Burke
,
F.
,
Coombes
,
P.
,
McNealy
,
S.
,
Freeman
,
D.
,
Pryde
,
D.
, and
Hoy
,
G.
, 2001, “
Sonographic Examination of Lateral Epicondylitis
,”
AJR, Am. J. Roentgenol.
0361-803X,
176
(
3
), pp.
777
782
.
9.
Bray
,
R. C.
,
Doschak
,
M. R.
,
Gross
,
T. S.
, and
Zernicke
,
R. F.
, 1997, “
Physiological and Mechanical Adaptations of Rabbit Medial Collateral Ligament After Anterior Cruciate Ligament Transection
,”
J. Orthop. Res.
0736-0266,
15
(
6
), pp.
830
836
.
10.
Zachos
,
T. A.
,
Arnoczky
,
S. P.
,
Lavagnino
,
M.
, and
Tashman
,
S.
, 2002, “
The Effect of Cranial Cruciate Ligament Insufficiency on Caudal Cruciate Ligament Morphology: An Experimental Study in Dogs
,”
Vet. Surg.
0161-3499,
31
(
6
), pp.
596
603
.
11.
Pollock
,
R. G.
,
Wang
,
V. M.
,
Bucchieri
,
J. S.
,
Cohen
,
N. P.
,
Huang
,
C. Y.
,
Pawluk
,
R. J.
,
Flatow
,
E. L.
,
Bigliani
,
L. U.
, and
Mow
,
V. C.
, 2000, “
Effects of Repetitive Subfailure Strains on the Mechanical Behavior of the Inferior Glenohumeral Ligament
,”
J. Shoulder Elbow Surg.
1058-2746,
9
(
5
), pp.
427
435
.
12.
Provenzano
,
P. P.
,
Heisey
,
D.
,
Hayashi
,
K.
,
Lakes
,
R.
, and
Vanderby
,
R.
, Jr.
, 2002, “
Subfailure Damage in Ligament: A Structural and Cellular Evaluation
,”
J. Appl. Physiol.
8750-7587,
92
(
1
), pp.
362
371
.
13.
Crisco
,
J. J.
,
Moore
,
D. C.
, and
McGovern
,
R. D.
, 2002, “
Strain-Rate Sensitivity of the Rabbit MCL Diminishes at Traumatic Loading Rates
,”
J. Biomech.
0021-9290,
35
(
10
), pp.
1379
1385
.
14.
Merter Ozenci
,
A.
, and
Panjabi
,
M. M.
, 2003, “
Radiofrequency Treatment Weakens the Fatigue Characteristics of Rabbit Anterior Cruciate Ligament
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
18
(
2
), pp.
150
156
.
15.
Phillips
,
T. J.
, and
Wright
,
I. M.
, 1994, “
Observations on the Anatomy and Pathology of the Palmar Intercarpal Ligaments in the Middle Carpal Joints of Thoroughbred Racehorses
,”
Equine Vet. J.
0425-1644,
26
(
6
), pp.
486
491
.
16.
King
,
G. J.
,
Pillon
,
C. L.
, and
Johnson
,
J. A.
, 2000, “
Effect of In Vitro Testing Over Extended Periods on the Low-Load Mechanical Behaviour of Dense Connective Tissues
,”
J. Orthop. Res.
0736-0266,
18
(
4
), pp.
678
681
.
17.
Ker
,
R. F.
,
Wang
,
X. T.
, and
Pike
,
A. V.
, 2000, “
Fatigue Quality of Mammalian Tendons
,”
J. Exp. Biol.
0022-0949,
203
(
Pt 8
), pp.
1317
1327
.
18.
Pike
,
A. V.
,
Ker
,
R. F.
, and
Alexander
,
R. M.
, 2000, “
The Development of Fatigue Quality in High- and Low-Stressed Tendons of Sheep (Ovis Aries)
,”
J. Exp. Biol.
0022-0949,
203
(
Pt 14
), pp.
2187
2193
.
19.
Schechtman
,
H.
, and
Bader
,
D. L.
, 2002, “
Fatigue Damage of Human Tendons
,”
J. Biomech.
0021-9290,
35
(
3
), pp.
347
353
.
20.
Schechtman
,
H.
, and
Bader
,
D. L.
, 1997, “
In Vitro Fatigue of Human Tendons
,”
J. Biomech.
0021-9290,
30
(
8
), pp.
829
835
.
21.
Buchanan
,
C. I.
, and
Marsh
,
R. L.
, 2001, “
Effects of Long-Term Exercise on the Biomechanical Properties of the Achilles Tendon of Guinea Fowl
,”
J. Appl. Physiol.
8750-7587,
90
(
1
), pp.
164
171
.
22.
De Zee
,
M.
,
Bojsen-Moller
,
F.
, and
Voigt
,
M.
, 2000, “
Dynamic Viscoelastic Behavior of Lower Extremity Tendons During Simulated Running
,”
J. Appl. Physiol.
8750-7587,
89
(
4
), pp.
1352
1359
.
23.
Wren
,
T. A.
,
Lindsey
,
D. P.
,
Beaupre
,
G. S.
, and
Carter
,
D. R.
, 2003, “
Effects of Creep and Cyclic Loading on the Mechanical Properties and Failure of Human Achilles Tendons
,”
Ann. Biomed. Eng.
0090-6964,
31
(
6
), pp.
710
717
.
24.
Schechtman
,
H.
, 1995, “
Mechanical Characterisation of Fatigue Failure in Human Tendons
,” Ph.D. thesis, University of London, London, UK.
25.
Wang
,
X. T.
, and
Ker
,
R. F.
, 1995, “
Creep Rupture of Wallaby Tail Tendons
,”
J. Exp. Biol.
0022-0949,
198
(
3
), pp.
831
845
.
26.
Wang
,
X. T.
,
Ker
,
R. F.
, and
Alexander
,
R. M.
, 1995, “
Fatigue Rupture of Wallaby Tail Tendons
,”
J. Exp. Biol.
0022-0949,
198
(
3
), pp.
847
852
.
27.
Amiel
,
D.
,
Frank
,
C.
,
Harwood
,
F.
,
Fronek
,
J.
, and
Akeson
,
W.
, 1984, “
Tendons and Ligaments: A Morphological and Biochemical Comparison
,”
J. Orthop. Res.
0736-0266,
1
(
3
), pp.
257
265
.
28.
Frank
,
C. B.
, and
Hart
,
D. A.
, 1990, “
The Biology of Tendons and Ligaments
,”
Biomechanics of Diarthrodial Joints
, edited by
V.
Mow
,
A.
Ratcliffe
, and
S.
Woo
, Vol.
1
,
Springer-Verlag
,
New York
, pp.
39
62
.
29.
Shrive
,
N. G.
,
Lam
,
T. C.
,
Damson
,
E.
, and
Frank
,
C. B.
, 1988, “
A New Method of Measuring the Cross-Sectional Area of Connective Tissue Structures
,”
ASME J. Biomech. Eng.
0148-0731,
110
(
2
), pp.
104
109
.
30.
Chimich
,
D.
,
Shrive
,
N.
,
Frank
,
C.
,
Marchuk
,
L.
, and
Bray
,
R.
, 1992, “
Water Content Alters Viscoelastic Behaviour of the Normal Adolescent Rabbit Medial Collateral Ligament
,”
J. Biomech.
0021-9290,
25
(
8
), pp.
831
837
.
31.
Azangwe
,
G.
,
Fraser
,
K.
,
Mathias
,
K. J.
, and
Siddiqui
,
A. M.
, 2000, “
In Vitro Monitoring of Rabbit Anterior Cruciate Ligament Damage by Acoustic Emission
,”
Med. Eng. Phys.
1350-4533,
22
(
4
), pp.
279
283
.
32.
Thornton
,
G. M.
,
Shrive
,
N. G.
, and
Frank
,
C. B.
, 2002, “
Ligament Creep Recruits Fibres at Low Stresses and Can Lead to Modulus-Reducing Fibre Damage at Higher Creep Stresses: A Study in Rabbit Medial Collateral Ligament Model
,”
J. Orthop. Res.
0736-0266,
20
(
5
), pp.
967
974
.
33.
Reed
,
K. L.
, and
Brown
,
T. D.
, 2001, “
Elastic Modulus and Strength of Emu Cortical Bone
,”
Iowa Orthop. J.
,
21
, pp.
53
57
.
34.
Rho
,
J. Y.
,
Ashman
,
R. B.
, and
Turner
,
C. H.
, 1993, “
Young’s Modulus of Trabecular and Cortical Bone Material: Ultrasonic and Microtensile Measurements
,”
J. Biomech.
0021-9290,
26
(
2
), pp.
111
119
.
35.
Kindt-Larsen
,
T.
,
Smith
,
D. B.
, and
Jensen
,
J. S.
, 1995, “
Innovations in Acrylic Bone Cement and Application Equipment
,”
J. Appl. Biomater
1045-4861,
6
(
1
), pp.
75
83
.
36.
Vallittu
,
P. K.
, 1998, “
Some Aspects of the Tensile Strength of Undirectional Glass Fibre-Polymethyl Methacrylate Composite Used in Dentures
,”
J. Oral Rehabil.
0305-182X,
25
(
2
), pp.
100
105
.
37.
Hansen
,
D.
, and
Steen
,
J. J.
, 1992, “
Additional Mechanical Tests of Bone Cements
,”
Acta Orthop. Belg.
0001-6462,
58
(
3
), pp.
268
271
.
38.
Mann
,
K. A.
,
Werner
,
F. W.
, and
Ayers
,
D. C.
, 1999, “
Mechanical Strength of the Cement-Bone Interface Is Greater in Shear Than in Tension
,”
J. Biomech.
0021-9290,
32
(
11
), pp.
1251
1254
.
39.
Kim
,
D. G.
,
Miller
,
M. A.
, and
Mann
,
K. A.
, 2004, “
Creep Dominates Tensile Fatigue Damage of the Cement-Bone Interface
,”
J. Orthop. Res.
0736-0266,
22
(
3
), pp.
633
640
.
40.
Cotton
,
J. R.
,
Zioupos
,
P.
,
Winwood
,
K.
, and
Taylor
,
M.
, 2003, “
Analysis of Creep Strain During Tensile Fatigue of Cortical Bone
,”
J. Biomech.
0021-9290,
36
(
7
), pp.
943
949
.
41.
Teoh
,
S. H.
, and
Cherry
,
B. W.
, 1984, “
Creep Rupture of Linear Polyethylene: 1. Rupture and Pre-Rupture Phenomena
,”
Polymer
0032-3861,
25
, pp.
727
734
.
42.
Lam
,
T.
, 1988, “
The Mechanical Properties of the Maturing Medial Collateral Ligament
,” Ph.D. thesis, University of Calgary, Calgary, AB, Canada.
43.
Abramowitch
,
S. D.
, and
Woo
,
S. L.
, 2004, “
An Improved Method to Analyze the Stress Relaxation of Ligaments Following a Finite Ramp Time Based on the Quasi-Linear Viscoelastic Theory
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
1
), pp.
92
97
.
44.
Johnson
,
G. A.
,
Livesay
,
G. A.
,
Woo
,
S. L.
, and
Rajagopal
,
K. R.
, 1996, “
A Single Integral Finite Strain Viscoelastic Model of Ligaments and Tendons
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
2
), pp.
221
226
.
45.
Woo
,
S. L.
,
Johnson
,
G. A.
, and
Smith
,
B. A.
, 1993, “
Mathematical Modeling of Ligaments and Tendons
,”
ASME J. Biomech. Eng.
0148-0731,
115
, (4B), pp.
468
473
.
46.
Weiss
,
J. A.
,
Woo
,
S. L.
,
Ohland
,
K. J.
,
Horibe
,
S.
, and
Newton
,
P. O.
, 1991, “
Evaluation of a New Injury Model to Study Medial Collateral Ligament Healing: Primary Repair Versus Nonoperative Treatment
,”
J. Orthop. Res.
0736-0266,
9
(
4
), pp.
516
528
.
47.
Gardiner
,
J. C.
, and
Weiss
,
J. A.
, 2003, “
Subject-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading
,”
J. Orthop. Res.
0736-0266,
21
(
6
), pp.
1098
1106
.
48.
Gardiner
,
J. C.
, and
Weiss
,
J. A.
, 2001, “
Simple Shear Testing of Parallel-Fibered Planar Soft Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
2
), pp.
170
175
.
49.
Limbert
,
G.
,
Taylor
,
M.
, and
Middleton
,
J.
, 2004, “
Three-Dimensional Finite Element Modelling of the Human ACL: Simulation of Passive Knee Flexion With a Stressed and Stress-Free ACL
,”
J. Biomech.
0021-9290,
37
(
11
), pp.
1723
1731
.
50.
Robinson
,
P. S.
,
Lin
,
T. W.
,
Jawad
,
A. F.
,
Iozzo
,
R. V.
, and
Soslowsky
,
L. J.
, 2004, “
Investigating Tendon Fascicle Structure-Function Relationships in a Transgenic-Age Mouse Model Using Multiple Regression Models
,”
Ann. Biomed. Eng.
0090-6964,
32
(
7
), pp.
924
931
.
51.
Atkinson
,
T. S.
,
Haut
,
R. C.
, and
Altiero
,
N. J.
, 1997, “
A Poroelastic Model That Predicts Some Phenomenological Responses of Ligaments and Tendons
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
4
), pp.
400
405
.
52.
Butler
,
S. L.
,
Kohles
,
S. S.
,
Thielke
,
R. J.
,
Chen
,
C.
, and
Vanderby
,
R.
, Jr.
, 1997, “
Interstitial Fluid Flow in Tendons or Ligaments: A Porous Medium Finite Element Simulation
,”
Med. Biol. Eng. Comput.
0140-0118,
35
(
6
), pp.
742
746
.
53.
Kwan
,
M. K.
, and
Woo
,
S. L.
, 1989, “
A Structural Model to Describe the Nonlinear Stress-Strain Behavior for Parallel-Fibered Collagenous Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
111
(
4
), pp.
361
363
.
54.
Liao
,
H.
, and
Belkoff
,
S. M.
, 1999, “
A Failure Model for Ligaments
,”
J. Biomech.
0021-9290,
32
(
2
), pp.
183
188
.
55.
Hurschler
,
C.
,
Provenzano
,
P. P.
, and
Vanderby
,
R.
, Jr.
, 2003, “
Application of a Probabilistic Microstructural Model to Determine Reference Length and Toe-to-Linear Region Transition in Fibrous Connective Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
3
), pp.
415
422
.
56.
Laudier
,
D.
,
Schaffler
,
M. B.
,
Flatow
,
E. L.
, and
Wang
,
V. M.
, 2007, “
Novel Procedure for High-Fidelity Tendon Histology
,”
J. Orthop. Res.
0736-0266,
25
(
3
), pp.
390
395
.
You do not currently have access to this content.