Proper selection of prosthetic foot-ankle components with appropriate design characteristics is critical for successful amputee rehabilitation. Elastic energy storage and return (ESAR) feet have been developed in an effort to improve amputee gait. However, the clinical efficacy of ESAR feet has been inconsistent, which could be due to inappropriate stiffness levels prescribed for a given amputee. Although a number of studies have analyzed the effect of ESAR feet on gait performance, the relationships between the stiffness characteristics and gait performance are not well understood. A challenge to understanding these relationships is the inability of current manufacturing techniques to easily generate feet with varying stiffness levels. The objective of this study was to develop a rapid prototyping framework using selective laser sintering (SLS) for the creation of prosthetic feet that can be used as a means to quantify the influence of varying foot stiffness on transtibial amputee walking. The framework successfully duplicated the stiffness characteristics of a commercial carbon fiber ESAR foot. The feet were mechanically tested and an experimental case study was performed to verify that the locomotor characteristics of the amputee’s gait were the same when walking with the carbon fiber ESAR and SLS designs. Three-dimensional ground reaction force, kinematic, and kinetic quantities were measured while the subject walked at 1.2 m/s. The SLS foot was able to replicate the mechanical loading response and locomotor patterns of the ESAR foot within ±2 standard deviations. This validated the current framework as a means to fabricate SLS-based ESAR prosthetic feet. Future work will be directed at creating feet with a range of stiffness levels to investigate appropriate prescription criteria.

1.
Ziegler-Graham
,
K.
,
MacKenzie
,
E. J.
,
Ephraim
,
P. L.
,
Travison
,
T. G.
, and
Brookmeyer
,
R.
, 2008, “
Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050
,”
Arch. Phys. Med. Rehabil.
0003-9993,
89
(
3
), pp.
422
429
.
2.
Robinson
,
J. L.
,
Smidt
,
G. L.
, and
Arora
,
J. S.
, 1977, “
Accelerographic, Temporal, and Distance Gait Factors in Below-Knee Amputees
,”
Phys. Ther.
0031-9023,
57
(
8
), pp.
898
904
.
3.
Czerniecki
,
J.
, and
Gitter
,
A.
, 1996, “
Gait Analysis in the Amputee: Has it Helped the Amputee or Contributed to the Development of Improved Prosthetic Components
,”
Gait and Posture
0966-6362,
4
, pp.
258
268
.
4.
Perry
,
J.
,
Boyd
,
L. A.
,
Rao
,
S. S.
, and
Mulroy
,
S. J.
, 1997, “
Prosthetic Weight Acceptance Mechanics in Transtibial Amputees Wearing the Single Axis, Seattle Lite, and Flex Foot
,”
IEEE Trans. Rehabil. Eng.
1063-6528,
5
(
4
), pp.
283
289
.
5.
Winter
,
D. A.
, and
Sienko
,
S. E.
, 1988, “
Biomechanics of Below-Knee Amputee Gait
,”
J. Biomech.
0021-9290,
21
(
5
), pp.
361
367
.
6.
Klute
,
G. K.
,
Kallfelz
,
C. F.
, and
Czerniecki
,
J. M.
, 2001, “
Mechanical Properties of Prosthetic Limbs: Adapting to the Patient
,”
J. Rehabil. Res. Dev.
0748-7711,
38
(
3
), pp.
299
307
.
7.
Breakey
,
J.
, 1976, “
Gait of Unilateral Below-Knee Amputees
,”
Orthot. Prosthet.
,
30
(
3
), pp.
17
24
.
8.
Hermodsson
,
Y.
,
Ekdahl
,
C.
,
Persson
,
B. M.
, and
Roxendal
,
G.
, 1994, “
Gait in Male Trans-Tibial Amputees: A Comparative Study With Healthy Subjects in Relation to Walking Speed
,”
Prosthet. Orthot Int.
0309-3646,
18
(
2
), pp.
68
77
.
9.
Royer
,
T. D.
, and
Wasilewski
,
C. A.
, 2006, “
Hip and Knee Frontal Plane Moments in Persons with Unilateral, Trans-Tibial Amputation
,”
Gait and Posture
0966-6362,
23
(
3
), pp.
303
306
.
10.
Macfarlane
,
P. A.
,
Nielsen
,
D. H.
,
Shurr
,
D.
, and
Meier
,
K.
, 1991, “
Perception of Walking Difficulty by Below-Knee Amputees Using a Conventional Foot Versus the Flex-Foot
,”
J. Prosthet. Orthot.
1040-8800,
3
(
3
), pp.
114
119
.
11.
Postema
,
K.
,
Hermens
,
H. J.
,
de Vries
,
J.
,
Koopman
,
H. F.
, and
Eisma
,
W. H.
, 1997, “
Energy Storage and Release of Prosthetic Feet. Part 2: Subjective Ratings of 2 Energy Storing and 2 Conventional Feet, User Choice of Foot and Deciding Factor
,”
Prosthet. Orthot. Int.
0309-3646,
21
(
1
), pp.
28
34
.
12.
Hafner
,
B. J.
,
Sanders
,
J. E.
,
Czerniecki
,
J.
, and
Fergason
,
J.
, 2002, “
Energy Storage and Return Prostheses: Does Patient Perception Correlate With Biomechanical Analysis?
Clin. Biomech. (Bristol, Avon)
0268-0033,
17
(
5
), pp.
325
344
.
13.
Fridman
,
A.
,
Ona
,
I.
, and
Isakov
,
E.
, 2003, “
The Influence of Prosthetic Foot Alignment on Trans-Tibial Amputee Gait
,”
Prosthet. Orthot Int.
0309-3646,
27
(
1
), pp.
17
22
.
14.
Hafner
,
B. J.
,
Sanders
,
J. E.
,
Czerniecki
,
J. M.
, and
Fergason
,
J.
, 2002, “
Transtibial Energy-Storage-and-Return Prosthetic Devices: A Review of Energy Concepts and a Proposed Nomenclature
,”
J. Rehabil. Res. Dev.
0748-7711,
39
(
1
), pp.
1
11
.
15.
Beaman
,
J. J.
, 1997,
Solid Freeform Fabrication: A New Direction in Manufacturing: With Research and Applications in Thermal Laser Processing
,
Kluwer
,
Dordrecht
.
16.
Faustini
,
M. C.
,
Crawford
,
R. H.
,
Neptune
,
R. R.
,
Rogers
,
W. E.
, and
Bosker
,
G.
, 2005, “
Design and Analysis of Orthogonally Compliant Features for Local Contact Pressure Relief in Transtibial Prostheses
,”
J. Biomech. Eng.
0148-0731,
127
(
6
), pp.
946
951
.
17.
Faustini
,
M. C.
,
Neptune
,
R. R.
, and
Crawford
,
R. H.
, 2006, “
The Quasi-Static Response of Compliant Prosthetic Sockets for Transtibial Amputees Using Finite Element Methods
,”
Med. Eng. Phys.
1350-4533,
28
(
2
), pp.
114
121
.
18.
Faustini
,
M. C.
,
Neptune
,
R. R.
,
Crawford
,
R. H.
,
Rogers
,
W. E.
, and
Bosker
,
G.
, 2006, “
An Experimental and Theoretical Framework for Manufacturing Prosthetic Sockets for Transtibial Amputees
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
14
(
3
), pp.
304
310
.
19.
Rogers
,
B.
,
Bosker
,
G. W.
,
Crawford
,
R. H.
,
Faustini
,
M. C.
,
Neptune
,
R. R.
,
Walden
,
G.
, and
Gitter
,
A. J.
, 2007, “
Advanced Trans-Tibial Socket Fabrication Using Selective Laser Sintering
,”
Prosthet. Orthot Int.
0309-3646,
31
(
1
), pp.
88
100
.
20.
Faustini
,
M. C.
,
Neptune
,
R. R.
,
Crawford
,
R. H.
, and
Stanhope
,
S. J.
, 2008, “
Manufacture of Passive Dynamic Ankle-Foot Orthoses Using Selective Laser Sintering
,”
IEEE Trans. Biomed. Eng.
0018-9294,
55
(
2
), pp.
784
790
.
21.
Rogers
,
B.
,
Bosker
,
G. W.
,
Faustini
,
M. C.
,
Walden
,
G.
,
Neptune
,
R. R.
, and
Crawford
,
R. H.
, 2008, “
Case Report: Variably Compliant Transtibial Prosthetic Socket Fabricated Using Solid Freeform Fabrication
,”
J. Prosthet. Orthot.
0309-3646,
20
(
1
), pp.
1
7
.
22.
Saunders
,
M. M.
,
Schwentker
,
E. P.
,
Kay
,
D. B.
,
Bennett
,
G.
,
Jacobs
,
C. R.
,
Verstraete
,
M. C.
, and
Njus
,
G. O.
, 2003, “
Finite Element Analysis as a Tool for Parametric Prosthetic Foot Design and Evaluation. Technique Development in the Solid Ankle Cushioned Heel (SACH) Foot
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
6
(
1
), pp.
75
87
.
23.
van Jaarsveld
,
H. W.
,
Grootenboer
,
H. J.
,
de Vries
,
J.
, and
Koopman
,
H. F.
, 1990, “
Stiffness and Hysteresis Properties of Some Prosthetic Feet
,”
Prosthet. Orthot Int.
0309-3646,
14
(
3
), pp.
117
124
.
24.
Underwood
,
H. A.
,
Tokuno
,
C. D.
, and
Eng
,
J. J.
, 2004, “
A Comparison of Two Prosthetic Feet on the Multi-Joint and Multi-Plane Kinetic Gait Compensations in Individuals With a Unilateral Trans-Tibial Amputation
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
19
(
6
), pp.
609
616
.
25.
Mattes
,
S. J.
,
Martin
,
P. E.
, and
Royer
,
T. D.
, 2000, “
Walking Symmetry and Energy Cost in Persons With Unilateral Transtibial Amputations: Matching Prosthetic and Intact Limb Inertial Properties
,”
Arch. Phys. Med. Rehabil.
0003-9993,
81
(
5
), pp.
561
568
.
26.
Aubin
,
P. M.
,
Cowley
,
M. S.
, and
Ledoux
,
W. R.
, 2008, “
Gait Simulation Via a 6-DOF Parallel Robot With Iterative Learning Control
,”
IEEE Trans. Biomed. Eng.
0018-9294,
55
(
3
), pp.
1237
1240
.
27.
Svanberg
,
K.
, 1987, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
(
2
), pp.
359
373
.
28.
Sigmund
,
O.
, 2001, “
A 99 Line Topology Optimization Code Written in MATLAB
,”
Struct. Multidiscip. Optim.
1615-147X,
21
(
2
), pp.
120
127
.
You do not currently have access to this content.